GROUPS OF HOMOLIOGY AND HOMOTOPY OF

O-TOPOLOGY

Shoukry I. Nada

Department of Mathematics, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt.

INTRODUCTION

Our aim in this paper is to describe the groups of homology and the fundamental group π_1 of the Θ -topology, R Θ R, which is the finest topology on the ground R² that induces the Euclidean topology on every line, ℓ_{θ} ; with slope $\theta \in \Theta \subseteq \{\theta: 0 \le \theta \le \pi\}$, this will take place insection 3. In section 2 we study some topological properties of the Θ -topology and show some differences between this topology and the Euclidean topology R π R

2. Connectness and Countability

It is obvious that R π R satisfies the definition of R Θ R whatever Θ is (even $\Theta = \{\theta : 0 < \theta < \pi\}$) i.e. each open set in Euclidean topology is open in the Θ -topology, hence the later one is fimer than the other. So the R Θ R is Hausdorff.

2.1 Theorm

Shoukry I. Nada

R θ R is pathwise connected if and only if θ has more than one element.

Proof

Let $x \neq y$ in \mathbb{R}^2 ; then one can use the fact that R with the Euclidean topology is pathwise connected to show that there are two paths ρ_1 and ρ_2 such that ρ_1 is a path in the direction ℓ_{θ_1} and ρ_2 is a path in the direction ℓ_{θ_2} , where θ_1 , $\theta_2 \in \Theta$. But since the composition of two paths is again a path, it follows that $\mathbb{R} \oplus \mathbb{R}$ is a pathwise connected space.

To prove the converse, we assume that Θ has just one element, say θ , and let x, y be two points not in the same line $\ell \theta$. Then there is no way to fined a path from x to y in the topological space R Θ R.

2.2 Corollary

 $R \Theta R$ is connected iff Θ has more than one element. Since the motion of a convergent sequence does not depend on the sequence itself only, but also depends on the structure of the underlying space. We deduce.

2.3 Theorem

A path $\rho : [0,1] \rightarrow R \Theta R$ from z_1 to z_2 has image $\rho ([0,1])$ which is contained in a finite number of connected segments with directions being in Θ .

proof

Since I = [0,1] is compact and ρ is continuous. ρ (I) is so, and consequently it is contained in a finite number of lines with slopes in Θ . Also ρ (I) is connected, it follows that ρ (I) = $\bigcup_{i=1}^{n} \ell_{\theta_i}$ with the

property that $I_j \bigcap I_i = \phi \forall i \neq j$ and I_{θ_i} , represents a segment in the line

 $\ell_{_{\theta_i}}$, $\theta_i \in \Theta$.

2.4 Definition

Let z be a point in R Θ R. An open interval I θ which lies on $\ell \theta$, $\theta \in \Theta$, and contains z is called a Θ - interval at z. a Θ -star at z is defined as :

$$\Theta(z) = \bigcup_{\theta \in \Theta} I_{\theta}(z)$$

Obviously, $\Theta(z)$ is connected in R Θ R.

2.5 Lemma [2]

A set U is $R \Theta R$ - open if and only if for each $Z \in U, \, U \text{ contains } \Theta$ - star atZ.

2.6 Theorem

 $R\Theta R$ is locally connected.

proof

we shall prove that the connected open sets of R Θ R forms a basis for its topology. Let U be an open set of R Θ R and $z \in R\Theta$ R. Then, by lemma (2.5) there is a Θ -star N₁ at z and N₁ \subseteq U. For each $z \in N_1$, U is a nbd. of z' and consequently there exists a $\Theta(z z)$ such that $\Theta(z) \subseteq U$. Since $z' \in N_1 \bigcap \Theta(z)$ and since both N₁, and $\Theta(z)$ are connected, it follows that $N_2 = N_1 \bigcup (\bigcup_{z \in N} \Theta(z))$ is connected. We continue in this way, so $N_{r+1} = N_r \bigcup$

85

Shoukry I. Nada

 $\bigcup_{z \in N} \Theta(z') \text{ for all } r \in N. \text{ Obviously } N_{r+1} \subset N_r \text{ But } N(z) = \\ \bigcup_{r=1}^{r} N_r \text{ Then } N(z) \subseteq U \text{ and } N(z) \text{ is connected. Also by construction } N(z) \text{ contains a } \Theta \text{-star for each of all its points, so by the previous lemma } N(z) \text{ is open.}$

The underlying space has some disadvantages. One of these is the following.

2.7 Theorem

If Θ has more than one element, then $R\Theta R$ is not first countable.

proof

Suppose not, then there would be a countable open base { V_n , $n \in N$ } at $z \in R\Theta R$. Let us also suppose $V_n \supseteq V_{n+1}$, $n \in N$. One then can construct a Θ -sequence $Z = \langle Z_n \rangle$, $z_n \in V_n$ such that z_n

→ z in $R\pi R$. Choosing $z_n \in V_n \bigcap N_{1/n}(z)$. Where $N_{1/n}(z)$ is the Euclidean open nbd. Of z of radius 1/n and W= V_1 - Z, one can see W is and R Θ R-open set, $z \in W$. So W is a nbd. Of z and contains no z_n ; hence { V_n , $n \in N$ } is not a nbd. base.

From the above theorem one can conclude that $R\Theta R$ is not metrizable. There are a limited number of T_2 - space which are not T_3 - space and in our hand one of such spaces. It is the Θ -space.

3. Homology and Homotopy of $R \Theta R$

A space X is contractible to a point $x_0 \in X$ with x_0 held fixed if there is a map

$$F: X \times [0,1] \rightarrow X \quad \text{such that} \\ F(x,0) = x_0 \quad x \in X \\ F(x,1) = x$$

$0 \le t \le 1$.

 $\mathbf{F}(\mathbf{x}_{o},t)=\mathbf{x}_{o}$ A space X is simply connected if X is pathwise connected and its fundamental group $\pi_1(X) \cong 0$.

It is well known that each contractible space is simply connected [1]. Let us prove that l

3.1 Lemma :

ROR is contractible

Proof:

Define F: $R\Theta R \times [0,1] \rightarrow R\Theta R$

$$(\mathbf{x},\mathbf{t}) \rightarrow (1-\mathbf{t})\mathbf{x}$$

This is a continuous map and meets the conditionds of contractibility and the identity map on ROR is homotopic to a constant map. Then we conclude the fundamental of $R\Theta R$ is trivil

i.e. $\pi_1 (R\Theta R) \cong 0$.

It is known that if each two spaces are homotopy equivalent, then their homology grops are isomorphic. Thus

 $\mathbf{H}_{n}(R \Theta R) = Z$ and $\mathbf{H}_{n}(R \Theta R) = 0$ for all $n \ge 1$

This comes by knowning the homology groups of $R \pi R$. We there for have in our hands a counter example of non-metric space which has the same homology groups of the Euclidean space on the base set R

REFERENCES

[1] Greenberg, M. and Harper, J. Algebric topology - A first cours, Benjamin- Cummings publishing Company, Massachusetts (1981).

[2] Nada, S. Spaces for plane with weak topologies, M. Sc. Thesis, Sheffield University, Sheffield (1983).

Shoukry I. Nada

مجموعات المومولوجي والموموتوبي للفراغ

شکری ابراهیم ندا

كلية العلوم – جامعة المنوفية الملخص العربي

تم استنتاج مجموعات الهومولوجى والهوموتوبى لهذا الفراغ وبذلك أصبح لدينا فراغ ليس متريا وله نفس مجموعات الهومولوجى والهوموتوبى للفراغ الاقليدى بالمستوى.