Sci. J. Fac. Sci. Menoufia Univ. Vol. VIII(1994)

ALGEBRAIC PROPERTIES OF THE CURVATURE TENSOR ON
 A BANACH MANIFOLD

EL. R. Lashin

Maths. Dept. Faculty of Science Menoufia University, Shebin E1-Kom Egypt

Abstract

For a finite dimentional Riemannian manifold. the curvature tensor has a number of interesting algebraic properties. In this paper, our aim is to generalize the concept of curvature tensor and study its properties for an infinite dimensional manifold modelled on a Banach space. Also, a generallization of the Ricci's identity ([2]) to the case of a Banach manifold is established.

INCRODUCITON

Let M be a Banach manifold of class $C^{r}(r \geq 2, \infty)$ modelled on a Banach space E ([1]), and let $\bar{\Gamma}$ be the linear connection of class C^{r-2} on M. For any x of M and any arbitrary chart $C=(U, \varphi, E)$ at x, let $p=\varphi(X) \in \varphi(U)$ and $\bar{h}_{i} \in T_{x} M$ (tangent space of M at $\left.x([1])\right), i=\overline{1, n+1}$.

Let $\bar{\alpha}$ and \bar{A} be two tensors of rank $(0, n)$ and $(1, n)$ resp. on h, We define Γ, α, A and $h_{i}, i=\overline{1, n+1}$ to be the models of $\bar{\Gamma}, \bar{\alpha}, \bar{A}$ and \bar{h}_{i}, resp., with respect to the chart C. In ([1]) the covariant differentiation of $\bar{\alpha}$ and \bar{A} is given locally as follows.

E1. R. Lashin
$\nabla \alpha_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right)=D \alpha_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} \alpha_{p}\left(h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right), \ldots(1.1)$
$\nabla A_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right)=D A_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)+$
$\Gamma_{p}\left(A_{p}\left(h_{1}, \ldots, h_{n}\right), h_{n+1}\right)$,
where D is the Frechet derivative (see([1])).
Also, in ([1]) the curvature tensor $\overline{\mathrm{R}}_{\mathrm{x}}$ and the torsion tensor \bar{S}_{x} on M are simply given locally in the chart C as follows:
$\mathrm{K}_{\mathrm{p}}\left(\mathrm{h}_{3} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)=D \Gamma_{\mathrm{p}}\left(\mathrm{h}_{2} ; \mathrm{h}_{3}, \mathrm{~h}_{1}\right)-\mathrm{D} \Gamma_{\mathrm{p}}\left(\mathrm{h}_{1} ; \mathrm{h}_{3}, h_{2}\right)+$
$+\Gamma_{p}\left(\Gamma_{p}\left(h_{3}, h_{1}\right), h_{2}\right)-\Gamma_{p}\left(\Gamma_{p}\left(h_{3}, h_{2}\right), h_{1}\right)$,
$S_{p}\left(h_{1}, h_{2}\right)=\frac{1}{2}\left(\Gamma_{p}\left(h_{1}, h_{2}\right)-\Gamma_{p}\left(h_{2}, h_{1}\right)\right)$

2.Ricci's identity:

Let \bar{A} and $\bar{\alpha}$ be two tensors of type $(1, n)$ and $(0, n)$, respectively, on a Banach manifold M of class $C^{r}(r \geq 2, \infty)$ with a linear connection $\bar{\Gamma}$ of class C^{r-2}. Then $\forall x \in M$ and $\bar{h}_{i} \in I_{X} M, i=\overline{1, n+2}$.
$\bar{\nabla}(\bar{\nabla} \bar{\alpha})_{X}\left(\bar{h}_{n+2} ; \bar{h}_{n+1} ; \bar{h}_{1} \ldots, \bar{h}_{n}\right)-\bar{\nabla}\left(\bar{\nabla} \bar{\alpha}_{X}\left(\bar{h}_{n+1} ; \bar{h}_{n+2} ; \bar{h}_{1} \cdots \bar{h}_{n}\right)=\right.$
$=\sum^{n} \bar{\alpha}_{X}\left(\bar{h}_{1}, \ldots, \bar{h}_{i-1}, \bar{R}_{X}\left(\bar{h}_{i}, \bar{h}_{n+2}, \bar{h}_{n+1}\right), \bar{h}_{1+1}, \ldots, \bar{h}_{n}\right)+$
$2 \stackrel{i=1}{\nabla} \frac{1}{\left(x_{X}\right.}\left(\bar{S}_{X}\left(\bar{h}_{n+2}, \bar{h}_{n+i}\right): \bar{h}_{1}, \ldots \bar{h}_{n}\right)$

Algebraic Properties of
$\bar{\nabla}(\bar{\nabla} \bar{A})_{x}\left(\bar{h}_{n+2} ; \bar{h}_{n+1} ; \bar{h}_{1}, \ldots, \bar{h}_{n}\right)-$
$\bar{\nabla}(\bar{\nabla} \bar{A})_{x}\left(\bar{h}_{n+1} ; \bar{h}_{n+2} ; \bar{h}_{1}, \ldots, \bar{h}_{n}\right)=$
$=\sum_{i=1}^{n} \bar{A}_{x}\left(\bar{h}_{1}, \ldots, \bar{h}_{i-1}, \bar{R}_{x}\left(\bar{h}_{i}, \bar{h}_{n+2}, \bar{h}_{n+1}\right), \bar{h}_{i+1}, \ldots, \bar{h}_{n}\right)+$
$+\bar{R}_{x}\left(\bar{A}_{x}\left(\bar{h}_{i}, \ldots, \bar{h}_{n}\right) ; \bar{h}_{n+1}, \bar{h}_{n+2}\right)+$
$+2 \bar{\nabla}_{\mathrm{A}}\left(\bar{S}_{\mathrm{X}}\left(\overline{\mathrm{h}}_{\mathrm{n}+2}, \overline{\mathrm{~h}}_{\mathrm{n}+1}^{\mathrm{n}+1}\right) ; \bar{h}_{1}, \ldots, \bar{h}_{\mathrm{n}}\right)$
where $\overline{\mathrm{R}}$ and $\overline{\mathrm{S}}$ are the curvature and torsion tonsors on M, respectively.

Proof:
To prove (2.1), (2.2), it sufficies to prove them locally with respect to an arbitrary chart on M. Let $C=$ (U, φ, E) be a chart at the point $x \in M$ and R, S, Γ, α, A, $h_{i} ; i=\overline{1, n+2}$ are the models of $\bar{R}, \bar{S}, \bar{\Gamma}, \bar{\alpha}, \bar{A}, \bar{h}_{i}$, respectively, with respect to the chart $C, p=\varphi(x)$.
Covariant differentiation of $\nabla \alpha$, which is defined in (1.1) yields
$\nabla(\nabla \alpha)_{p}\left(h_{n+2} ; h_{n+1} ; h_{1}, \ldots, h_{n}\right)=$
$=D(\nabla \alpha)_{p}\left(h_{n+2} ; h_{n+1} ; h_{1}, \ldots, h_{n}\right)-$
$-\nabla \alpha_{p}\left(\Gamma_{p}\left(h_{n+1}, h_{n+2}\right) ; h_{1} \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} \nabla \alpha_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{i+1}, \ldots, h_{n}\right)=$
$=D^{2} \alpha_{p}\left(h_{n+2}: h_{n+1}: h_{1}, \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} D x_{p}\left(h_{n+2}: h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+1}\right) \cdot h_{i+1}, \ldots, h_{n}\right)-$

$$
\begin{aligned}
& \text { El. R. Lashin } \\
& -\sum_{i=1}^{n} \alpha_{p}\left(h_{1}, \ldots, h_{i-1}, D \Gamma_{p}\left(h_{n+2} ; h_{i}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)- \\
& -\nabla \alpha_{p}\left(\Gamma_{p}\left(h_{n+1}, h_{n+2}\right) ; h_{1} \ldots, h_{n}\right)- \\
& -\sum_{i=1}^{n} D \alpha_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{i+1}, \ldots, h_{n}\right)+ \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{p}\left(h_{1}, \ldots, h_{j-1}, \Gamma_{p}\left(h_{j}, h_{n+1}\right), \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), \ldots, h_{n}\right)+ \\
& +\sum_{i=1}^{n} \alpha_{p}\left(h_{1}, \ldots, \Gamma_{p}\left(\Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right) \ldots(2.3)
\end{aligned}
$$

By alternating both sides of formula (2.3) with respect to h_{n+1} and h_{n+2} and denoting this operation by underling them, we obtain
$2 \nabla(\nabla \alpha)_{p}\left(\underline{h}_{n+2}, \underline{h}_{n+1} ; h_{1}, \ldots, h_{n}\right)=$
$=\sum_{i=1}^{n} \alpha_{p}\left(h_{i}, \ldots, h_{i-1}, D \Gamma_{p}\left(h_{n+1} ; h_{i}, h_{n+2}\right)-\right.$
$-D r_{p}^{\prime}\left(h_{n+2}: h_{i}, h_{n+1}\right)+$
$\left.+\Gamma_{p}^{\prime}\left(\Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{n+1}\right)-\Gamma_{p}\left(\Gamma_{p}\left(h_{i}, h_{n+1}\right), h_{n+2}\right), h_{i+1}, \ldots h_{n}\right)+$
$+\nabla \alpha_{p}\left(\Gamma_{p}\left(h_{n+2}, h_{n+1}\right)-\Gamma_{p}\left(h_{n+1}, h_{n+2}\right) ; h_{1} \ldots, h_{n}\right) \ldots(2.4)$
By using (1.3) and (1.4): the identity (2.4) takes the form:
$2 \nabla(\nabla \alpha)_{p}\left(h_{n+2} ;{\underset{-}{n+1}}^{h_{n}} h_{1} \ldots, h_{n}\right)=$

Algebraic Properties of

$$
\begin{aligned}
& \quad=\sum_{i=1}^{n} \alpha_{p}\left(h_{1}, \ldots, h_{i-1}, R_{p}\left(h_{i} ; h_{n+2}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)+ \\
& \quad+2 \nabla \alpha_{p}\left(S_{p}\left(h_{n+2}, h_{n+1}\right) ; h_{1} \ldots, h_{n}\right) \\
& \\
& \text { i.e. (2.1) holds. }
\end{aligned}
$$

Sinilarly, the covariant differentiation of $\nabla \mathrm{A}$ with respect to h_{n+2}, which is defined in (1.2), yields
$\nabla(\nabla A)_{p}\left(h_{n+2} ; h_{n+1} ; h_{1}, \ldots, h_{n}\right)=D(\nabla A)_{p}\left(h_{n+2} ; h_{n+1} ; h_{1}, \ldots, h_{n}\right)-$
$-\nabla A_{p}\left(\Gamma_{p}\left(h_{n+1}, h_{n+2}\right) ; h_{1} \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} \nabla A_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{i+1}, \ldots, h_{n}\right)+$
$+\Gamma_{p}\left(\nabla A_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right), h_{n+2}\right)=$
$=D^{2} A_{p}\left(h_{n+2}, h_{n+1} ; h_{1} \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} D A_{p}\left(h_{n+2} ; h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, D \Gamma_{p}\left(h_{n+2} ; h_{i}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)+$
$+D \Gamma_{p}\left(h_{n+2} ; A_{p}\left(h_{1}, \ldots, h_{n}\right), h_{n+1}\right)+$
$+\Gamma_{p}\left(D A_{p}\left(h_{n+2} ; h_{1}, \ldots, h_{n}\right), h_{n+1}\right)-\nabla A_{p}\left(\Gamma_{p}\left(h_{n+1}, h_{n+2}\right), h_{1} \ldots, h_{n}\right)-$
$-\sum_{i=1}^{n} D A_{p},\left(h_{n+1} ; h_{1} \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{i+1}, \ldots, h_{n}\right)+$

$$
\begin{align*}
& \text { EI. R. Lashin } \\
& +\sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} A_{p}\left(h_{1}, \ldots, \Gamma_{p}\left(h_{j}, h_{n+1}\right), \ldots, \Gamma_{p}\left(h_{i}, h_{n+2}\right), \ldots, h_{i+1}, \ldots, h_{n}\right)+ \\
& +\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(\Gamma_{p}\left(h_{i}, h_{n+2}\right), h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)- \\
& -\sum_{i=1}^{n} \Gamma_{p}\left(A_{p}\left(h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+2}\right), \ldots, h_{n}\right), h_{n+1}\right)+ \\
& +\Gamma_{p}\left(D A_{p}\left(h_{n+1} ; h_{1}, \ldots, h_{n}\right)-\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, \Gamma_{p}\left(h_{i}, h_{n+1}\right), \ldots, h_{n}\right)+\right. \\
& \left.+\Gamma_{p}^{\prime}\left(A_{p}\left(h_{1}, \ldots, h_{n}\right), h_{n+1}\right), h_{n+2}\right) .
\end{align*}
$$

Similary, alternating both sides of (2.5) with respect to h_{n+2} and h_{n+1} and using (1.3), (1.4) we have
$2 \nabla(\nabla \lambda)_{p}\left(\underset{-}{h_{n+2}} ; \underset{-}{h_{n+1}} ; h_{1} \ldots, h_{n}\right)=$
$=\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, R_{p}\left(h_{i} ; h_{n+2}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)+$
$+2 \nabla A_{p}\left(S_{p}\left(h_{n+2}, h_{n+1}\right): h_{1}, \ldots, h_{n}\right)+$
$+2 D \Gamma_{p}\left(h_{n+2} ; A_{p}\left(h_{1}, \ldots, h_{n}\right), h_{n+1}\right)+$
$+2 \Gamma_{p}\left(\Gamma_{p}\left(A_{p}\left(h_{1}, \ldots h_{n}\right) \cdot \underset{\sim}{h_{n+1}}\right),{\underset{\sim}{h}+2}_{h_{n}}\right)$.
i.e. $\left.2 \nabla(\nabla A)_{p} \underset{-}{\left(h_{n+2}\right.}: \underline{n}_{n+1}, h_{1}, \ldots . h_{n}\right)=$

Algebraic Properties of
$=\sum_{i=1}^{n} A_{p}\left(h_{1}, \ldots, h_{i-1}, R_{p}\left(h_{i} ; h_{n+2}, h_{n+1}\right), h_{i+1}, \ldots, h_{n}\right)+$
$+2 \nabla A_{p}\left(S_{p}\left(h_{n+2}, h_{n+1}\right) ; h_{1} \ldots, h_{n}\right)+$
$+\mathrm{K}_{\mathrm{p}}\left(A_{\mathrm{p}}\left(\mathrm{h}_{1}, \ldots . \mathrm{h}_{\mathrm{n}}\right) ; \mathrm{h}_{\mathrm{n}+1}, \underline{\mathrm{~h}}_{\mathrm{n}+2}\right)$.

Hence (2.2) holds and this completes the proof.:
Remark.
If the connection $\bar{\Gamma}$ is symmetric, then the torsion tensor is zero and therefore the terms which contain \bar{S} in (2.1) and (2.2) vanish.

Now, let M be a Riemannian manifeld, then there is defined on M a tensor field \bar{g} of type $(0,2)$ which is symmetric and postive definite. We shall assume always that g is of class C^{∞}.

Theorem 2.1

For any four tangent vectors $\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}, \bar{h}_{4} \in T_{X} M$ on a Riemannian manifold M, we have
$\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{4}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)+\overline{\mathrm{g}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3}, \overline{\mathrm{~h}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{4} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)=0$
$\bar{g}_{\mathrm{x}}\left(\bar{h}_{4}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\bar{h}_{3} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)=\bar{g}_{\mathrm{x}}\left(\bar{h}_{1}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{2} ; \overline{\mathrm{h}}_{4}, \overline{\mathrm{~h}}_{3}\right)\right)$,
Where $\overline{\mathrm{k}}_{\mathrm{x}}$ and \bar{g}_{y} are the curvature tensor and the metric tensor ([2]) on M, respectively.
Proof.
Since M is a Riemannian manifold, then the fundamental meteric tensor \bar{g} is covariant constant ([2]), that is

$$
\begin{equation*}
\bar{\nabla} \bar{g}=0 . \tag{2.8}
\end{equation*}
$$

As the metric g is covariant tensor of type $(0,2)$, then from (2.1) we have

$$
\begin{align*}
& \text { E1. } \frac{R}{\nabla}(\bar{\nabla} \cdot \bar{g})_{X}\left(\overline{h_{1}} ; \bar{h}_{2}, \bar{h}_{4} \bar{h}_{3}\right)-\bar{\nabla}(\bar{\nabla} \bar{g})_{\times}\left(\overline{h_{2}} ; \bar{h}_{1} ; \bar{h}_{4}, \bar{h}_{3}\right)= \\
& =\overline{\mathrm{g}}_{\underline{x}}\left(\bar{h}_{4}, \overline{\mathrm{R}}_{\underline{x}}\left(\bar{h}_{3} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)+\overline{\mathrm{g}}_{\mathrm{x}}\left(\bar{h}_{3}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{4} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)+ \\
& +2 \nabla \overline{\mathrm{~g}}_{\mathrm{x}}\left(\overline{\mathrm{~S}}_{\mathrm{x}}\left(\frac{\mathrm{~h}_{1}}{} ; \overline{\mathrm{h}}_{2}\right) ; \overline{\mathrm{h}}_{4} \overline{\mathrm{~h}}_{3}\right) \text {. } \tag{2.9}
\end{align*}
$$

Substituting from (2.8) in (2.9) we obtain
$\bar{g}_{\mathrm{x}}\left(\bar{h}_{4}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \bar{h}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)+\overline{\mathrm{g}}_{\mathrm{x}}\left(\bar{h}_{3}, \overline{\mathrm{R}}_{\mathrm{x}}\left(\bar{h}_{4} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)\right)=0$, and this proves (2.6).
By using
$\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \overline{\mathrm{h}}_{1}, \bar{h}_{2}\right)=-\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \bar{h}_{2}, \bar{h}_{1}\right)$.

$$
\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{3} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)+\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{1} ; \overline{\mathrm{h}}_{2}, \overline{\mathrm{~h}}_{3}\right)+\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{2} ; \overline{\mathrm{h}}_{3}, \overline{\mathrm{~h}}_{1}\right)=0
$$

and (2.6) we can verify that:
$\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \overline{\mathrm{h}}_{2}, \overline{\mathrm{~h}}_{4}\right), \overline{\mathrm{h}}_{1}\right)+\overline{\mathrm{g}}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{2} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{4}\right), \overline{\mathrm{h}}_{3}\right)+$
$+\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{X}}\left(\overline{\mathrm{h}}_{3} ; \overline{\mathrm{h}}_{1}, \bar{h}_{2}\right), \overline{\mathrm{h}}_{4}\right)=0$.
Consequently, we have that
$\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{1} ; \bar{h}_{2}, \bar{h}_{3}\right), \bar{h}_{4}\right)+\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\bar{h}_{4} ; \bar{h}_{1}, \bar{h}_{3}\right), \bar{h}_{2}\right)+$
$+\bar{g}_{\mathrm{X}}\left(\overrightarrow{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{3} ; \bar{h}_{1}, \bar{h}_{2}\right) \cdot \bar{h}_{4}\right)=0$.
$\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\bar{h}_{3} ; \overline{\mathrm{h}}_{2}, \overline{\mathrm{~h}}_{4}\right), \overline{\mathrm{h}}_{1}\right)+\overline{\mathrm{g}}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{1} ; \overline{\mathrm{h}}_{2}, \bar{h}_{3}\right), \overline{\mathrm{h}}_{4}\right)+$
$+\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{\mathrm{x}}\left(\bar{h}_{2} ; \bar{h}_{4}, \bar{h}_{3}\right), \bar{h}_{1}\right)=0$.
and
$\bar{g}_{x}\left(\bar{R}_{x}\left(\bar{h}_{2} ; \bar{h}_{1}, \bar{h}_{4}\right), \bar{h}_{3}\right)+\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\bar{h}_{4} ; \bar{h}_{1}, \overline{\mathrm{~h}}_{3}\right), \overline{\mathrm{h}}_{2}\right)+$
$+\bar{g}_{\mathrm{x}}\left(\overline{\mathrm{R}}_{\mathrm{x}}\left(\overline{\mathrm{h}}_{2} ; \overline{\mathrm{h}}_{4}, \overline{\mathrm{~h}}_{3}\right), \overline{\mathrm{h}}_{1}\right)=0$.
From (2.10) . (2.11), (2.12) and (2.13) we have
$2 \overline{\mathrm{~g}}_{\mathrm{X}}\left(\bar{h}_{3}, \overline{\mathrm{R}}_{\mathrm{X}}\left(\bar{h}_{1} ; \bar{h}_{2}, \bar{h}_{4}\right)\right)=2 \overline{\mathrm{~g}}_{\mathrm{X}}\left(\bar{h}_{2}, \overline{\mathrm{R}}_{\mathrm{X}}\left(\bar{h}_{4} ; \bar{h}_{3}, \bar{h}_{1}\right)\right)$.
i.e. (2.7) is true and thus the proof of the theroem is

Algebraic Properties of
complete.
Proposition 2.2.
Let M be Banach manifold of class $C^{r}\left(\begin{array}{rl} \\ 2 & 3, \infty) \text { such }\end{array}\right.$ that ${ }_{1} 2$

- there exist two linear connections $\bar{\Gamma}, \bar{\Gamma}$ on M. Then $\forall x \in M$ and $\forall \bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3} \in \mathrm{~T}_{\mathrm{x}} M$

$$
\begin{align*}
& \frac{2}{R_{x}}\left(\bar{h}_{3} ; \bar{h}_{1}, \bar{h}_{2}\right)=\frac{1}{R_{X}}\left(\bar{h}_{3} ; \bar{h}_{1}, \bar{h}_{2}\right)+\frac{1}{\nabla} \bar{T}_{x}\left(\bar{h}_{2} ; \bar{h}_{3}, \bar{h}_{1}\right)- \\
& \stackrel{\frac{1}{-\nabla}}{T_{X}}\left(\bar{h}_{1} ; \bar{h}_{3}, \bar{h}_{2}\right)+\bar{T}_{X}\left(\bar{T}_{X}\left(\bar{h}_{3}, \bar{h}_{1}\right), \bar{h}_{2}\right)-\bar{T}_{X}\left(\bar{T}_{X}\left(\bar{h}_{3}, \bar{h}_{2}\right), \bar{h}_{1}\right)+ \\
& +2 \bar{T}_{\mathrm{X}}\left(\bar{h}_{3}, \frac{1}{\mathrm{~S}_{\mathrm{X}}}\left(\bar{h}_{1}, \overline{\mathrm{~h}}_{2}\right)\right), \tag{2.14}\\
& \text { where } \frac{1}{\mathrm{~K}_{\mathrm{x}}}, \frac{2}{\mathrm{~K}_{\mathrm{x}}} \text { are the curvature tensors of the linear } \\
& \text { connections } \frac{1}{\Gamma} \\
& \text { and } \frac{2}{\Gamma} \text {, respectively, } \bar{T}=\frac{2}{\Gamma}-\frac{1}{\Gamma} \text { is the tensor of } \\
& \text { deformations, } \frac{1}{\nabla} \text { is the covariant differentiation with } \\
& \text { respect to } \frac{1}{\Gamma} \text {, and } \frac{1}{S} \text { is the torsion tensor of } \frac{1}{\Gamma}
\end{align*}
$$

Proof:
It sufficies to prove (2.14) locally with respect to an arbitrary chart $C=(U, \varphi, E)$ at $x \in M$. Let $\stackrel{1}{R}, \stackrel{2}{R}, T, \stackrel{1}{S}, \stackrel{1}{\Gamma}$, ${ }_{\Gamma}^{2}$ and $h_{i}, i=\overline{1.3}$ be the models of $\frac{1}{R}, \frac{2}{R}, \bar{T}, \frac{1}{S}, \frac{1}{\Gamma}, \frac{2}{\Gamma}$ and $\overline{h_{i}}$, respectively, with respect to the chart C, and let

$$
p=\varphi(N) \in \varphi(\mathbb{U})
$$

E1. R. Lashin

We denote the alternation of any two vectors by underling them.
From the definition of the curvature tensor, we have

Then substituting $\quad{ }_{\Gamma}^{\Gamma}=T_{p}+\stackrel{1}{\Gamma}_{p}$ in the above formula, we obtain

$+2 \mathrm{~T}_{\mathrm{p}}\left(\mathrm{T}_{\mathrm{p}}\left(\mathrm{h}_{3}, \underline{h_{1}}\right), \mathrm{h}_{2}\right)+2 \mathrm{~T}_{\mathrm{p}}\left(\Gamma_{\mathrm{p}}\left(\mathrm{h}_{3}, \underline{h_{1}}\right), \underline{h_{2}}\right)+$
$+2 \Gamma_{p}\left(T_{p}\left(h_{3}, h_{1}\right), \underline{h}_{2}\right)$.
Adding and subtracting the term $2 \mathrm{~T}\left(\mathrm{~h}_{3}, \stackrel{\Gamma}{\Gamma}_{\mathrm{p}}\left(\underline{\mathrm{h}}_{1}, \underline{h}_{2}\right)\right.$) to the right hand side of (2.15), and taking into account that \bar{T} is a tensor of type (1, 2) on M and $\stackrel{1}{p}_{p}\left(h_{1}, h_{2}\right)=\stackrel{1}{\Gamma}_{p}\left(h_{1}, \underline{h}_{2}\right)$ we obtaint
$\stackrel{2}{\mathrm{R}_{\mathrm{p}}}\left(\mathrm{h}_{3} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)=\stackrel{1}{\mathrm{R}_{\mathrm{p}}}\left(\mathrm{h}_{3} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)+2 \stackrel{1}{\nabla} \mathrm{~T}_{\mathrm{p}}\left(\underline{h_{2}} ; \mathrm{h}_{3}, \underline{h_{1}}\right)+$
$+2 T_{p}\left(T_{p}\left(h_{3}, h_{1}\right), h_{2}\right)+2 T_{p}\left(h_{3}, \stackrel{1}{S}\left(h_{1}, h_{2}\right)\right)$.
and this proves (2.14).

Theorem 2.3: (Bianchi's identity)
If $\overrightarrow{\mathrm{R}}$ be the curvature tensor of the linear connection
$\overline{\mathrm{F}}$ on a Banach manifold M of class $\mathrm{C}^{\mathrm{r}}(\mathrm{r} \geq+\infty)$. Then for

Algebraic Properties of
any $x \in M$ and $\forall \bar{h}_{i} \in T_{x} M, i=\overline{1,4}$, we have:

$$
\overline{\nabla R}_{x}\left(\overline{\mathrm{~h}}_{1} ; \overline{\mathrm{h}}_{4} ; \overline{\mathrm{h}}_{2}, \overline{\mathrm{~h}}_{3}\right)+\overline{\nabla R}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{2} ; \overline{\mathrm{h}}_{4} ; \overline{\mathrm{h}}_{3}, \overline{\mathrm{~h}}_{1}\right)+\overline{\nabla R}_{\mathrm{x}}\left(\overline{\mathrm{~h}}_{3} ; \overline{\mathrm{h}}_{4} ; \overline{\mathrm{h}}_{1}, \overline{\mathrm{~h}}_{2}\right)=0
$$

Proof:

It sufficies to prove the identity locally with respect to an arbitrary chart $C=(U, \varphi, E)$ at arbitrary point $x \in M$.
For this let $p=\varphi(x) \in \varphi(U)$ and $R, \Gamma, h_{i} ; i=\overline{1,4}$ be the models of $\overline{\mathrm{R}}, \bar{\Gamma}, \overline{\mathrm{h}}_{\mathrm{i}}$ with respect to the chart C .

Covariant differentiation of R at the point p which is defined in (1.3) gives us
$\nabla \mathrm{K}_{\mathrm{p}}\left(\mathrm{h}_{3} ; \mathrm{h}_{4} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)=D \mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{3} ; \mathrm{h}_{4} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)-\mathrm{R}_{\mathrm{p}}\left(\mathrm{r}_{\mathrm{p}}\left(\mathrm{h}_{4}, \mathrm{~h}_{3}\right) ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)-$
$-R_{p}\left(h_{4} ; h_{1}, \Gamma_{p}\left(h_{2}, h_{3}\right)\right)-R_{p}\left(h_{4} ; \Gamma_{p}\left(h_{1}, h_{3}\right), h_{2}\right)+$
$+\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{1}, h_{2}\right), h_{3}\right)=$
$=2 D^{2} \Gamma_{p}\left(h_{3} ; h_{2} ; h_{4}, \underline{h}_{1}\right)+2 D \Gamma_{p}\left(h_{3} ; \Gamma_{p}\left(h_{4}, \underline{h}_{1}\right), h_{-}\right)+$
$+2 \Gamma_{\mathrm{p}}\left(\mathrm{D} \Gamma_{\mathrm{p}}\left(\mathrm{h}_{3} ; \mathrm{h}_{4}, \mathrm{~h}_{1}\right), \mathrm{h}_{2}\right)-\mathrm{R}_{\mathrm{p}}\left(\mathrm{\Gamma}_{\mathrm{p}}\left(\mathrm{h}_{4}, \mathrm{~h}_{3}\right) ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)-$
$-2 \mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{4} ; \mathrm{h}_{1}, \Gamma_{\mathrm{p}}\left(\underline{h_{2}}, \mathrm{~h}_{3}\right)\right)+\Gamma_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{4} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right), \mathrm{h}_{3}\right)$

By a similar way we obtain
$\nabla \mathrm{K}_{\mathrm{p}}\left(\mathrm{h}_{2} ; \mathrm{h}_{4} ; \mathrm{h}_{3}, \mathrm{~h}_{1}\right)=$
$=2 D^{2} \Gamma_{p}^{\prime}\left(h_{2} ; \mathrm{h}_{1} ; \mathrm{h}_{4}, \underline{h}_{3}\right)+2 \mathrm{D} \Gamma_{\mathrm{p}}\left(\mathrm{h}_{2} ; \Gamma_{\mathrm{p}}\left(\mathrm{h}_{4}, \underline{h}_{3}\right), \underline{h}_{1}\right)+$
$+2 \Gamma_{p}\left(D \Gamma_{p}\left(h_{2} ; h_{4}, h_{-}\right), h_{-}\right)-R_{p}\left(\Gamma_{p}\left(h_{4}, h_{2}\right): h_{3}, h_{1}\right)-$
$-2 \mathrm{~K}_{\mathrm{p}}\left(\mathrm{h}_{4}: \mathrm{h}_{3}, \Gamma_{\mathrm{p}}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)\right)+\Gamma_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{4} ; \mathrm{h}_{3}, \mathrm{~h}_{1}\right), h_{2}\right)$
and
$\nabla \mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{1} ; \mathrm{h}_{4} ; \mathrm{h}_{2}, \mathrm{~h}_{3}\right)=$
$=2 D^{2} \Gamma_{p}\left(h_{1} ; \mathrm{h}_{3} ; \mathrm{h}_{4}, \underline{h}_{2}\right)+2 \mathrm{D} \Gamma_{\mathrm{p}}\left(\mathrm{h}_{1} ; \Gamma_{\mathrm{p}}^{\prime}\left(\mathrm{h}_{4}, \underline{-} \underline{h}_{2}\right), \underline{-}_{3}\right)+$

E1. R. Lashin

$+2 \Gamma_{p}^{\prime}\left(D \Gamma_{p}\left(h_{1} ; h_{4}, h_{2}\right), h_{3}\right)-R_{p}\left(\Gamma_{p}\left(h_{4}, h_{1}\right) ; h_{2}, h_{3}\right)-$
$-2 R_{p}\left(h_{4} ; \underline{h}_{2}, \Gamma_{p}\left(h_{3}, h_{1}\right)\right)+\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{2}, h_{3}\right), h_{1}\right)$

Substituting from (2.17), (2.18) and (2.19) in (2.16) we obtain

$$
\begin{align*}
& \nabla \mathrm{R}_{\mathrm{p}}\left(\mathrm{~h}_{3} ; \mathrm{h}_{4} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)+\nabla \mathrm{R}_{\mathrm{p}}\left(\mathrm{~h}_{2} ; \mathrm{h}_{4} ; \mathrm{h}_{3}, \mathrm{~h}_{1}\right)+ \\
& +\nabla \mathrm{K}_{\mathrm{p}}\left(\mathrm{~h}_{1} ; \mathrm{h}_{4} ; \mathrm{h}_{2}, \mathrm{~h}_{3}\right)= \\
& =2 \Gamma_{p}\left(D \Gamma_{p}^{\prime}\left(h_{3} ; h_{4}, h_{1}\right), h_{2}\right)+2 \Gamma_{p}\left(D \Gamma_{p}^{\prime}\left(h_{2} ; h_{4} ; h_{3}\right), h_{1}\right)+ \\
& +2 \Gamma_{p}\left(D \Gamma_{p}\left(h_{1} ; h_{4}, h_{2}\right), h_{3}\right)+2 \Gamma_{p}\left(\Gamma_{p}\left(\Gamma_{p}\left(h_{4}, h_{3}\right), h_{2}\right), h_{1}\right)+ \\
& +2 \Gamma_{p}\left(\Gamma_{p}\left(\Gamma_{p}\left(h_{4}, h_{2}\right), \underline{h}_{1}\right), \underline{h}_{3}\right)+2 \Gamma_{p}\left(\Gamma_{p}\left(\Gamma_{p}\left(h_{4}, h_{1}\right), \bar{h}_{3}\right), \overline{h_{2}}\right)+ \\
& +\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{1}, h_{2}\right), h_{3}\right)+\Gamma_{p}^{\prime}\left(R_{p}\left(h_{4} ; h_{3}, h_{1}\right), h_{2}\right)+ \\
& +\Gamma_{\mathrm{p}}\left(\mathrm{~K}_{\mathrm{p}}\left(\mathrm{~h}_{4} ; \mathrm{h}_{2}, \mathrm{~h}_{3}\right), \mathrm{h}_{1}\right)= \\
& =\Gamma_{p}^{\prime}\left(2 D \Gamma_{p}\left(h_{21} ; h_{4}, \underline{h}_{32}\right)+2 \Gamma_{p}\left(\Gamma_{p}\left(h_{4}, h_{3}\right), h_{2}\right), h_{1}\right)+ \\
& +\Gamma_{\mathrm{p}}\left(2 \mathrm{D} \Gamma_{\mathrm{p}}\left(\bar{h}_{3} ; \mathrm{h}_{4}, \underline{h}_{-}\right)+2 \Gamma_{\mathrm{p}}^{\prime}\left(\Gamma_{\mathrm{p}}\left(\mathrm{~h}_{4}, \underline{h}_{1}\right), \underline{h}_{2}\right), \mathrm{h}_{2}\right)+ \\
& +\Gamma_{\mathrm{p}}\left(2 D \Gamma_{\mathrm{p}}^{\prime}\left(\mathrm{h}_{1} ; \mathrm{h}_{4}, \underline{h}_{2}\right)+2 \Gamma_{\mathrm{p}}\left(\Gamma_{\mathrm{p}}\left(\mathrm{~h}_{4}, \mathrm{~h}_{2}\right), \underline{h}_{1}\right), h_{3}\right)+ \\
& +\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{1}, h_{2}\right), h_{3}\right)+\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{3}, h_{1}\right), h_{2}\right)+ \\
& +\Gamma_{p}\left(R_{p}\left(h_{4} ; h_{2}, h_{3}\right), h_{1}\right) \ldots . \tag{2.20}
\end{align*}
$$

Using the linearity of the connection Γ_{p} and the definition of R_{P} and taking into account that R_{p} is skewsymmetric with respect to the second and the third arguments, then (2.20) becomes
$\nabla \mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{3} ; \dot{h}_{4} ; \mathrm{h}_{1}, \mathrm{~h}_{2}\right)+\nabla \mathrm{R}_{\mathrm{p}}\left(\mathrm{h}_{2} ; \mathrm{h}_{4} ; \mathrm{h}_{3}, \mathrm{~h}_{1}\right)+$
$+\nabla h_{p}\left(h_{1}: h_{4} ; h_{2}, h_{3}\right)=$
$=\Gamma_{p}^{\prime}\left(R_{p}\left(h_{4}: h_{1}, h_{3}\right)+R_{p}\left(h_{4} ; h_{3}, h_{1}\right), h_{2}\right)+$
$+I_{p}\left(R_{p}\left(h_{4}: h_{3}, h_{2}\right)+R_{p}\left(h_{4} ; h_{2}, h_{3}\right), h_{1}\right)+$
$+\Gamma_{p}\left(R_{p}\left(h_{4}: h_{2} \cdot h_{1}\right)+R_{p}\left(h_{4} ; h_{1} \cdot h_{2}\right), h_{3}\right)=0$.
and this conpletes the proof.

Algebraic Properties of

REFERENCES

1-Fomin,V.Differential Geometry of Banach manifolds, Kazan, U.S.S.R., 1983

2-Kobayashi,S. and Nomizu, K., Foundations of differential Geometry, Vols I, II. New York :interscience, 1963, 1969.

البحث لالانيى: (بحث منفرد)

الستر /لبـعثغ:

Algebraic Properties of the Curyature tensor on a Banach Manifold الخواص الجبرية لممتد الانحناء عنى فزاغات بناخ المتعددة الطيـت الالتهاتية البعد "لمجإة4:

مجلة كلية العلوم -جامعة المنوفية -مصر

Sci. J. Fac. Sci., Menoufia Univ., Shebin El-Kom, Egypt Vol.VIII, No.59,1994.
تبأة عن البحشب: -

 فى الـوندسة التثاضلية (حالة البعد المحندي))

