Mansoura University		Exam of Optoelectronics	
			Preliminary Master
			Two Pages

25/9/2013 Full Mark [100] Time allowed: 3 hours

Q1. (a) Estimate a relation for the modal dispersion in step index fiber?
[30 marks]
(b) A multimode step index fiber with core diameter $\mathrm{d}=80 \mu \mathrm{~m}$, the refractive index of the cladding $\mathrm{n}_{2}=1.45$, the modal dispersion is $15 \mathrm{~ns} / \mathrm{km}$. calculate the numerical aperture NA and the maximum bit rate when the signal is transmitted 20 km . What is the maximum value of θ for which the rays will be guided through the fiber. Corresponding to the maximum value of θ, calculate the number of reflections that would take place in traversing a kilometer through the length of the fiber.

(c) Discuss the optical losses of the fiber and what are the operating windows of minimum losses?

Q2. Estimate the 1-D Finite Difference Time Domain relations and use them within a written code in MATLAB for simulating the propagation of Electromagnetic fields in a dielectric slab ($\mathrm{n}=1.45$), assuming the slab length is
(a) Finite and equal $10 \mu \mathrm{~m}$ and bounded by perfect metal,
(b) Infinite.
[20 marks]

Q3. (a) Estimate a relation for a propagating plane wave in 1D lossless media?
(b) Estimate a relation for a propagating wave in 1D lossy media?
(c) The electric field of a plane wave propagating in a lossless nonmagnetic dielectric material with $\varepsilon_{\mathrm{r}}=2.5$ is given by

$$
E=10 \cos \left(4 \pi \times 10^{9} t-k z\right) \hat{y}
$$

Determine:
i) Frequency, phase velocity, wave vector and the intrinisic impedance.
ii) The relation of magnetic field
iii) Determine the positions where E_{y} is a positive maximum at time instant $\mathrm{t}=10^{-8} \mathrm{~s}$.
iv) Find the distance at which the amplitude of the electric field is 10% of its value at $z=0 \mathrm{~m}$.
v) Calculate the phase constant, attenuation constant, the intrinsic impedance, skin depth and the wavelength if the dielectric material has a loss tangent of 0.02 .

Q4. The following figure shows a two-interface problem with a dielectric slab with intrinsic impedance of η_{1} in Air.
a) With the aid of the matching and propagation matrices, find the reflection and transmission responses
b) Design a reflection-less slab for the wavelength 450 nm .

Note

Good Luck
Dr. Nihal Fayez

