Eng. Research Bull.
Faculty of Eng. \& Tech.

EFFECT OF HIGHER ORDER APPROXIMATION OF THE DEAD-TIME IN CONTROL ALGORITHM BASED ON LYAPUNOV'S DIRECT METHOD

Dr. S. M. M. BADRAH*

ABSTRACT

Lyapunov's Direct Method has been applied by Badrah [1] to systems containing long delay time after approximating the exponential term representing this delay time to a second-order padé-approximant and therefore, the whole control system, under investigation, has become of fourth order.

In present work, the exponential term is expanded to fourth-order Padé-approximant to get a whole system of sixth-order,in order to study the effect of increasing the order of the system on applicability of the proposed control algorithm.

A sinter plant model, given in Fig.1., is used as a numerical practical example in which the dead-time approximation is utilized in the observer loop only to obtain adequate estimation of state-variables without any additional instrumentation.

Computer programs have been written in BASIC language to suit the home micro computers. A list of computer programs is included in the Appendix.

The adequate responses of the computer simulation of the sinter plant confirm the generality and powerfulness of the techniques suggested by the author.

* Lecturer in Mechanical Engineering Department, Faculty of Engineering and Technology, Menoufia University.

1. INTRODUCTION

In previous publications by the author [1-4], the exponential term representing the delay time in Laplace domain has been approximated using Pade-type approximant [5] to a second order rational polynomial before applying the suggested techniques based on either the Lyapunov's pirect Method or optimal regulator and poles positioning and in both cases, the sinter plant was used as an example to test the qualification of the proposed techniques.

The sintering process itself consists mainly of mixing iron-ore fines and other necessary materials (limestone and/or dolomite)with coke breeze as a solid fuel. Water is added to moisten the fines to help the agglomeration process and to impart permeability to the mix. Igniting the mix on the strand layer by layer leads in bonding the grains and a strong agglomerate is formed. The transportation of the materials from storage bins and mixing drums to the strand and combustion zone takes about 360 seconds; which is the deadtime under investigation.

Applying the approximation to the exponential term will accordingly increase the order of the control system. Hence, it is of interest to study the effect of increasing the order of the approximant on the stability of the proposed control algorithms by Badrah [1-4]. This study is presented in this paper.The exponential delay-time term is approximated to. a fourth order rational polynomial according to Baker [5] to give

$$
e^{-L s}=\frac{840-360 L s+60 L^{2} s^{2}-4 L^{3} s^{2}}{840+480 L s+120 L^{2} s^{2}+16 L^{3} s^{3}+L^{4} s^{4}}
$$

To obtain a comparable study, the simplified model of the sinter plant in [1] is adopted here and redrawn in Fig.1. The order of the whole system is therefore increased to sixth.

A micro computer, SINCLAIR 2X-SPECTRUM 48K, was used to simulate the plant model and the control algorithm associated with the state estimator, observer. The programs have been written in BASIC language and located in the Appendix.

2. STATE-SPACE EQUIVALENCE OF THE SYSTEM

The required representation of the system in state-space form can be obtained with the help of the state-variable diagram given in Fig. 2 as follows

$$
\begin{aligned}
& \dot{x}_{1}=-C_{1} C_{2} x_{1}+840 x_{2}-360 L x_{3}+60 L^{2} x_{4}-4 L^{3} x_{5} \\
& \dot{x}_{2}=x_{3} \\
& \dot{x}_{3}=x_{4} \\
& \dot{x}_{5}=\left(-840 x_{2}-480 L x_{3}-120 L^{2} x_{4}-16 L^{3} x_{5}+R K x_{6}\right) / L^{4} \\
& \dot{x}_{6}=\left(u-x_{6}\right) / T
\end{aligned}
$$

which can be written in the general state-variable form:

$$
\begin{equation*}
x=A x+B u \quad, \quad y=H x \tag{2}
\end{equation*}
$$

Taking 360 seconds transportation time lag to be assigned for L and substitution for $C_{1}=0.0015$ and $C_{2}=10 / 3$, matrices A and B are evaluated to be
$A=\left[\begin{array}{cccccc}-0.005 & 840 & -129600 & 7776000 & -186624000 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -5 . E-8 & -1.03 E-5 & -9.26 E-4 & -1 / 22.5 & 1 . E-10 \\ 0 & 0 & 0 & 0 & 0 & -0.025\end{array}\right]$
and the driving vector B will be :

$$
\left.B^{\prime}=\begin{array}{llllll}
0 & 0 & \cdots & 0 & 0 & 0 \tag{7}
\end{array} 0.025\right]
$$

The characteristic equation when calculated from the plant matrix A may be written as

$$
\begin{align*}
(s+0.005)(s & +0.025)\left[s^{4}+0.044444 s^{3}+0.000926 s^{2}\right. \\
& +0.0000103 s+0.00000005]=0 \tag{8}
\end{align*}
$$

The numerical values of the eigenvalues of this system are computed from eqn.(8) and are found to be: -0.005 , $-0.025,-0.00477345 \pm j 0.0058983$, and -0.01744878 $\pm j 0.0237479$ to give a good indiction about the stability of this system.

3. CONTROL ALGORITHM AND OBSERVER DESIGN

As shown in Fig. 1, the control law is given by $\mathrm{u}=-\mathrm{B}^{\prime} \mathrm{P} \boldsymbol{x}$
The Lyamunov's matrix equation

$$
\begin{equation*}
A^{2} P+P A=-Q \tag{10}
\end{equation*}
$$

where both P and Q are positive-definite-symmetric matrices, has been solved for the diagonal matrix Q with all elements on the diagonal of the same value as 0.1×10^{-4}, using the iteration method explained by the author in [3j.

Luenberger observer is adopted to estimate the values of the state variables required for implementing the proposed technique. This will be of the form :

$$
\begin{equation*}
\ddot{z}=\mathrm{D} \cdot \mathbf{z}+\mathrm{E} \cdot Y+\mathrm{G} . \mathrm{ER} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{z}=\mathbf{T} \cdot \hat{\mathbf{x}}, \tag{12}\\
& G=T \cdot \mathbf{B}, \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
T . A-D . T=E \cdot H \tag{14}
\end{equation*}
$$

The elements of vector H are the same as in eqn. (5), vector E has five elements and all are assigned to unity, and the fifth order D matrix is selected to be diagonal. The elements on the diagonal may be chosen, according to the given guide in [1-3], as follows :

$$
\begin{equation*}
D=\operatorname{diag} .[-0.002,-0.0019,-0.0018,-0.0017,-0.0016] \tag{15}
\end{equation*}
$$

The matrix equation, given by eqn.(14), has been solved using the Kronecker product method illustrated by Badrah [1].

A separate computer program was written by the author to compute the elements of the positive-definite-symmetric P matrix as a solution of the Lyapunov matrix equation, eqn. (10), using the iteration technique after eleven iterations only. Eqn. (16) gives the result of this iteration.

A second program was written to solve the matrix observer equation, eqn. (14), using Kronecker product method explained by the author in details in [1]. The result is expressed in eqn. (17).

Several attempts to apply some iteration techniques to solve eqn.(14) did not give reasonable results because both A and D matrices converge semultaneously to unit matrix leading to no solution. These attempts were tried to decrease the computer running time, since the Kronecker product method takes very long time and requires very big storage memory.

The values of matrix T and matrix P must be fed to the simulation computer program as a part of the input data, as shown in Appendix line no 332 through to line no 363. This program calculates first the inverse of matrix T after it is merged by the vector H and solves the differential equations included by applying Euler integration method.

A step input is applied in a form of 10% increase -in the set point, R, after a running time of 600 seconds which is bigger than the dead-time itself. Fig. 3, shows the response of the sinter plant to this disturbance with a steady state error of approximately -2%. The final value is exactly equal to 43.92 ton instead of 44 ton.

Also, a start up condition has been tested by assigning a zero for all parameters for a period of 600 seconds, then a desired value of 40 ton is given to the set point. The response is shown in Fig. 4 and has a maximum overshoot of 39.34 ton and a final steady state condition of 35.6 ton is obtained.

Comparing these results with those previously obtained, given in Fig.5, it can be seen that there is no significant effect of increasing the order of the approximation of the dead-time exponential term. Also, the proposed method via Lyapunov's Direct method is still simply applied with the higher order system, of sixth order here, which shows strength and generality of the methods suggested and previously investigated by the author.
\therefore ON`SION

The dead-time approximation to higher order approximant does not affect the applicability of the proposed techniques. The resulting increasing order of the whole control system shows the same simplicity, as before, in selecting the necessary and adequate parameters such as the D, E, and T matrices of the observer and in solving the Lyapunov matrix equation but longer computer running time is required. The system stability and the steady-state error are still within the acceptable engineering range.

The obtained results confirm the powerfulness and generality of the methods discussed and previously published by the author and perhaps encourage the attempts of applying many other modern techniques on similar systems containing long delay-time in future.

6. REFERENCES

1] Badrah, S.M.M., 1981, Ph.D. Thesis, Department of Mechanical Engineering,Leeds University, U.K.

2] Badrah, S.M.M., and Gill. K.F., 1981, Trans. Inst. M.C., Vol.3, No 3, July-Sept.

3] Badrah, S.M.M., and Gill., K.F. 1982; Proc. of 4th Int. Conference for Mechanical Power Engineering, v-32,Faculty of Engineering, Cairo University.

4] Badrah, S.M.M., 1983, Proc. of 2nd PEDAC Int. Conference, Alexandria University, Egypt.
5] Baker, G.A., Jr.. 1975, Essentials of Padé Approximant, Academic Press, Inc.,London.
7) APPENDIX

The simulation computer program has been written in BASIC language and the inverse of matrices can be computed using the following subroutine.

Figure 5 Responses to an increase of 10% in set point for different values of the observer D matrix with a second order approximation of the dead-time.

