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ABSTRACT 

- I  

Lyapunov's Direct Method has been applied by 

Badrah [ I ]  to systems containing long delay time after 
\ 

approximating the exponential . term representing this 
8 

delay time to a second-order Pade-approximant and 

therefore, the whole control system, under investiga- 

tion, has become of fourth order. 

In present work, the exponential term is expanded 

to fourth-order ~ad&ap~roximant to get a whole system 

of sixth-order,in order to study the effect of increa- 

sing the order of the system on applicability of the 

proposed control algorithm. 

A sinter 'plant model, given in Fig. 1 . , is used as 
a numerical practical example in which the dead-time 

approximation is utilized in the observer loop only to 

obtain adequate estimation of state-variables without 

any additional instrumentation. 

Computer programs have been written in BASIC 

language to suit the home micro computers. A list of 

computer programs is included in the Appendix. 
.. --- .- - - - - . -- - - -  - - - 

- -  ----The adequate responses of the computer simulation - - -- -. .- - . -- - - 
- - -. - - -  - - - - -  - 

of the sinter plant codfirm the generality and power- 

fulness of - the techniques suggested by the author. 
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- --- - 

In previous publfcations by the author [I-41, the 

exponential term representing the delay time in 
-..- - - 

Laplace domain -has been -approximated using pad&-type 

approximant [51 to a second order rational polynomial 

before applying the suggested techniques based on 

either the Lyapunov's pirect Method or optimal regula- 

tor and poles positioning and in both c'ases,the sinter 
3 

plant was used as an example to test the qualification 

of the proposed techniques. -, 

- The sintering process itself consists mainly of 

mixing iron-ore fines and other necessary materials 

(limestone and/or do1omite)with coke breeze as a solid 

fuel. Water is added to moisten the fines to help the 

agglomeration process and to impart permeability to 

the mix. Igniting the mix on the strand layer by layer 

leads in bonding the grains and a strong agglomerate 

is formed. The transportation of the materials from 

storage bins and mixing drums to the strand and combus- 

tion zone takes about 360 seconds; which is the dead- 

time under investigation. 

Applying the approximation to the exponential 

term will accordingly increase the order of the 

control system. Hence, it is of interest to study the 
- - 

- -. - - effect of-increasing-the - order of the approximant on 
- - .- - . - - 

- - -- -. - - 
- - - -- - -- the stabi1i:t-y_-of-the proposed control -algorithms by - - - .  

-. 

Badrah [I-41. This study is presented in this paper,The 
- 

* .  
--exponential delay-time term is approximated to* a 

fourth order rational polynomial according to Baker 

[5]togive 



- -- . To obtain a comparable study, the - simpkif Led 

model of the sinter plant in [ I ]  is adopted here and 

redrawn in Fig.1. The order of the whole system is 

theref re increased to sixth. 9 - 

A micro computer, SINCLAIR ZX-SPECTRUM 48K, was 

used to simulate the plant model and the control 

algorithm associated with the state estimator, obser- 

ver. The programs have been written in BASIC language 

and located in the Appendix. 
- - -  - - - ,  - -  -- - - - 

2 .  STATE-SPACE EQUIVALENCE O F  THE SYSTEM 

The required representation of the system in 

state-space £ o m  can be obtained with the help of the 

state-variable diagram given in Fig.2 as follows 

which can be written in the general state-variable form: 
- 





B = [  0 

and 

where 

Taking 360  seconds transportation time lag to be 

assigned for L and substitution for C1 = 0.0015 and 

C2 = 1 0 / 3 ,  matrices A and B are evaluated to be 

840  
f 

-360 L 6 0  L2 -4 L2 0 

0 . o . -  1 0 0 0 
0 0 0 1 0 0 

- 0  - -  - 0, 0 1 0 

0 840  - -  480 - -  - -  120  16 - - RK - 
L~ L~ L L L~ 

0 0 - 0 0 0 - l /Tc  - 

and the driving vector B will be : 

, ( 3 )  

The characteristic equation when calculated from the 

plant matrix A may be written as 
-- -- - - 

- . . 
- - - -  

(S + 0 - 0 0 5 )  (s + 0 .025)  [F4 +--0T044444 s3 + 0.000926 s2 
- -- 

+ 0.0000103 s + 0.0O000005J = 0 ( 8  

The numerical values of the eigenvalues of this system 

are computed from eqn . - (8 )  and are found to be: -0.005,  

-0.025, -0.00477345 + j0 .0058983 ,  and -0.01744878 

t j0 .0237479  to give a good indiction about the 

stability of this system. 



3 .  CONTROL ALGORITHM AND OBSERVER DESIGN 

As shown in Fig. 1, the control law is given by 
. -- -. - - 
u = -  Bt P 2- 

- - - - (9 \ 

The Lyamunov's matrix equation 
-- - - A'P +-P A =--- Q .. 

,where_both P and Q are positive-definite-symmetric 

matrices, has been solved for the diagonal matrix Q 

with all elements on the diagonal of the same value as 

0.1 x 1 o - ~  , using the iteration method explained by the 
author in [3 j . 

. - 

Luenberger observer is adopted to estimate the 

values of the state variables required for implement- 

ing the proposed technique. This will be of the form : 

where A 

A 

z = T . x ,  (12) 

and 

The elements of vector H are the same as - in eqn. (5) , 
vector E has five elements and all are assigned to 

unity, and the fifth order D matrix is selected to be 

diagonal. The elements on the diagonal may be chosen, 

according to the given guide in [I-31, as follows : 

D = diag.[-0.002, -0.0019, -0.0018, -0.0017, -0.0016] 
- - - 

- * 

- - .- - - . (15) 
- 

- - -- - - - - -  - -- 
- - -  -- - 

- 

The matrix? equation, given by eqn.(14), has been 

solved using the Kronecker product method illustrated 
- --  - 

by Badrah [ 1 I . - - - 



4 .  SIMULATION RESULTS A N D  DISCUSSION 

- -.- - -  
A separate computer program was written by t4e 

author to compute the elements of the positive- 
. - - 

- definite-symmetric P matrix as a solution of the 

Lyapunov matrix equation, eqn.(lO) ,using the iteration 

technique after eleven iterations only. Eqn.(l6) gives 

the result of this iteration. - .  
\ 

1 

A second program was written to solve the matrix 

observer equation, eqn.(l4), using Kronecker product 

method explained by the author in details in [ I ] .  The 

result is expressed in eqn. ( 1  7) . 

Several attempts to apply some iteration tech- 

niques to solve eqn. (1 4) did not give reasonable 

results because both A and D matrices converge semul- 

taneously to unit matrix leading to no solution. These 

attempts were tried to decrease the computer running 

time, since the Kronecker product method takes very 

long time and requires very big storage memory. 

The values of matrix T and matrix P must be fed 

to the simulation computer program as a part of the 

input data, as shown in Appendix line no 332 through - 
to line no 363. This program calculates first the - 
inverse of matrix T after it is merged by the vector H 

and solves the differential equations included by 
- 

- applying Euler integration method. 
- . - 

- --- - - - 
- 

- - -- - - 

A step input is applied in a form of 10% increase 
- .  

-in the set point, R, after a -running time of 600 

seconds which is bigger than the dead-time itself. 
- - 

Fig.3, shows the response of the sinter plant to this 

disturbance with a steady state error of approximately 

-2%. The final value is exactly equal to 43.92 ton 

instead of 44 ton. 





~ l s o ,  a start up condition has been tested by 

assigning a zero for all parameters for a period o f  

600 seconds. then a desired value of-40 ton is given 

to the set point. The response is shown in Fig.4 and 

has a maximum overshoot of 39.34- ton and a final 

- steady state condition of 35-6 ton is obtained. 
- - - - 

- - - -- - - - - --  - 
- - -- - -  - - -. - 

, A  - 

Comparing these results with those previously 

obtained, glven in Fig.5, it can be seen that there 1s 

no significant effect of increasing the order of the 

approxxmat lon of the dead-time exponential term. Also, 

the proposed method via Lyapunov's Direct method is 

still simply applied with the higher order system, of 

sixth order here, which shows strength and generality 

of the methods suggested and previously investigated by 

the author. 

The dead-time approximation to higher order 

approximant does not affect the applicability of the 

proposed techniques. The resulting increasing order 

of the whole control system shows the same simplicity, 

as before, in selecting the necessary and adequate 

parameters such as the and matrices the 

observer and in solving the Lyapunov matrix equation 

but longer computer running time is required. The 

system stability and the steady-state error are still 

within the acceptable engineering range. 

The obtained results -confirm the powerfulness and 
- - .. 

generality of the methods discussed and previously 

published by the author and perhaps encourage the 
- - 

attempts of applying many other modern techniques on 

similar systems containing long delay-time in future. 
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7 1  A P P E N D I X  

The simulation computer program has been written 

in BASIC language and the inverse of matrices can be 

computed using the following SUBROUTINE. 



2 RCM ++gYaTEH Progrr  rimuLat 
i o n  o l  a S~~ PLRNT +++ 

3 0434 L 18GWI . DXPl 0 f W  . D n l  I 
( 6 , s ) :  DlYl.BL6 61. DXn c f b l  

4 DIW R I ~ J ~ J :  D X ? ~  b ( 6 1 :  DIW 0 
t e , s ~ .  o m  w c e l .  out ets3 

5 bsn z ( e > .  6 x n  p t e , e ~ :  o m  T 
(S 6 3  : D I H  ~ ( 6 1  : UIt l  d i 6 3  r D m  K- 
(61 

6 DfW Y t 6 1 .  DIH UI63- D W  F(6  
) : D m  N (6) . oxx H (6) : D I ~  X (61 

7 o m  u t i a m  
re I N P ~  -ENTER THE ORDER OF T 

W E  SYSTEH: ";)Jt.m HmN-I: IN-- 
"Pins i ~ i m e  - TF 

W i a  READ S ~ W , ~ D , D L ~ C Z , C ~ , R ~ R ~ ,  . . 
16 RERD TC,RK,IU 
16 FOR I=% T O  N 
17 READ C C I1 . I a  

iB NEXr I 
19 FOR 1=1 TO H 
20 RERD E C XI 
21 NEXr I 
22 FQR I-i TO N . .  \ 
23 MR 3- TU N 
24 RERD R ( I J J )  
28 NEXT 3. N m  I . 
28 FOR 1=1 T O  N. . , 
27 READ BCXJ r , 

29 NEXT I 
38 FOR d m 1  T O  N I 

31 RERD XC3) 
32 NEXT J 
33 FOR I=% TO n 
34 FOR 3-1 TO H 
35 RERD DCrJ33  
36 NEXT J: NeXT I 
37 Lm PI=W*C1+Ca: LET m e  
38 FOR I-1 TO N 
39 LET G ( I f = 8 :  U ! T - Z ( 1 1 = 0 :  Lm 

I ( N , I l  = H c I l  
4 1  IF I=* THEN- 60 TO 48 
42 FOR J - i  T O  N 
63 RERD T L I , J l  : LET I ( 1 , J l  = T r y  .. 

#UJ 
44 LPT G ~ X ?  4 C I I  + T ( I , J l + B C ~ )  
65 L n  z [ I > S ? ( I )  + T ( I , J > + C ( J l  
67 NEXT J: NEXT I 
68 F O R  I=% T O  N 
49 LET B ( l , I )  =0 
58 FOR J=1 T O  N 
61 RERD PC1 Jl 
82 LPT Q(~,~~=Q(~,I~+B(J~+P(II 



806 L E T  XXmN 
8E38 I F  IX>r TWCN Lm MX-N+%_ 
sa. L m  ma2 
666 FOR K = l  T O  N 
568 I?TT Kfl-K-1: LET PV-8 
572 k OR 1-1 T O  N 
576 FOR J m i  T O  N 
677 ~ ~ r n  SCPZL,XROU and JCOL a r r a  
us f o r  invaCLd p i v o t  s u b s c r i p t s +  

L ~ T - J ~ K )  =J 
896 NEXT J: NEXT 1 
59s Ren .+ Inspro t h a t  t h e  - r e t e e  

t e d  p i v o t  is ~ 8 r s . r  t h a n  z e r o + *  
CL 

596 IF AbS tpv) B B  T H E N  00 T O  68 - 
598 PRIM W e  g i v e n  m a t r i x  i s  

stnu l a r " :  RETURN 
59s Ren ssUpdatt t h e  dtterrinan 

t value+,+  
600 LfET D T r O T * P V  
601 L e T  I K - R t K ) :  L R  J K - J L K I  
602 REPI- + + N o r D a i i s e  t h e  P f V 0 7  r 

o r  elements. ++ 
603 FOR 3-1 TO nx 
684 LeT S C X K ,  J) 11<fK, J) /PU 
686 N C M  J 
686 LET I ( IK J K ~  PI,PU: Rfn *+Ca 

r r v  o u t  t h e  e t e m l n a t i o n  and ZNVE 

rOR I - Z  T O  N 
LET' A X - I 1 1  410 
IF I-IK TH&N GO TO B Z A  
LET 1 t I ; ' J K )  r -RI /PU 
r O R  J o l - T O  HX 
IF  J < > J K  TWEN L n  I l I r J 3 - I (  

- R I + I ( Z X ,  3 1  
NEXT J 
N E X T  I 
H P Y T  K . - . 
RCM *-*ORDER SOLVTION UFILUES 
A W I  RND CREATE K a R R P Y * +  
FOR 1-1 TO N 
LET -3UnR CTl : LET J L - d I I I  : L 

I I U J  r 3 L  
IF XX > o O T T H L N  LET X ( J L )  -1 ( I 

I 
822- NEXT X 
623 RE% f * A d J u s t  t h e  sign o f  lh 

Q detersinant ++++ 
624 LET IHmQ:  L E T  N Z - N - 1  
626 FOR I = % - T O  Nf 
628 L e T . . I P m I + f  
630 FOR. 3=IP  T O  N 
632 IF  K  (3) > =K (11 THEN GO T O  63 

634 L E T  3 P m K  f J I  . LET K ( 3 3  nK (I) : 
LET K (1) =JP: L F ~  Z H = Z H + Z  
636 N H n  J. NEXT I 
638 IF ( X M  ( I H / 2 >  +2> < ,It+ T H E N  

LET D7-'a-DT- -- - 
. 6 3 9 - ~ ~ ~ - & + +  IT =.is o s i  t i v e  r 

c t u r n  t h e  s o t u t i o n  r i t k o u t  t h e  1 
n v e r s e + + +  

- -640 PIP I X S B  T H E N  00 TO 670 - 
- 66-1 REPI * + I F  XX i s  >-B;uns~camb 

--le the  i n v e r s e  F I R S T  BY ROU++ 
-662 FOR 3ri  TO N - 
863 FOR. 16% TO N 
664 LET' I U m R ( X 3 :  LET J L - J ( X 3 :  L 
TT Y C d L l  =I ( I U ,  J) 
6d8 H E M  I 
0d8 FOR I o i  TO N  
680 L R  I t I r J )  ( I F  
682 NEXT I: NDCT J 
688 RCH sinem 'BY COLUMN+* 
686 FOR XnZ T O  N  
6S0 FOR d m 1  TO U 
860 L!5 I J = R  t 3 I  : LET 33-3 (dl  : L 

Y (Id) ~ S ( X ~ d 3 1  
662 NEXT J 
664 FOR J-1 TO N 
666 LET I ( X , J l = Y C J l  
666 N E X T  Ji. NEXT S 
670 P R I M  DETERHINRHT 0 f the g 

i v e n  MFITRIX-"; DT 
672 R E T U R N  

Figure 3 Set point is increased 

Figure 4 Set point is increased 

from zero t o  40 tons. 



Figure 5j Responses t o  an increase  of 1@ i n  s e t  point  f o r  

d i f f e r en t  va lues  of the  observer D matrix with 

a second order  approximation of t h e  dead-time. 


