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'EFFECT OF HIGHER ORDER APPROXIMATION OF THE DEAD-TIME
IN. CONTROL ALGORITHM BASED ON LYAPUNOV'S DIRECT METHOD

' ~ *
- Dr. 5. M. M. BADRAH
ABSTRACT

Lyapunov's Direct Method has been applied by
Badrah [1] to systems contalnlng 1ong delay time after
approximating the exponentlal term representlng “this
delay time to a second-order Pade-approx1mant and
therefore, the whole control system, under investiga-
tion, has become of fourth order. '

In present work the exponential term is expanded
to fourth-order. Pade-approx1mant to get a whole system
of 51xth-order'1n order to study the effect of increa-
sing the order of the system on applicability of the
proposed control algorithm.

A sinter plant model} given in Pig.1., is used as
a numerical practical example in which the dead-time
approximation is utilized in the observer loop only to
obtain adequate estimation of state-variables without
any additionai_instrumentation.

i

Computer:programs have been written in BASIC

language to suit the home micro computers. A 1list of

computer programs is included in the Appendix.

adequate responses of the computer 51mulatlon

of the 81nter plant confirm the generallty and power-
fulness of the techniques suggested by the author.

* Lecturer 1in Mechanical  Engineering Departﬁeﬁt,
Faculty of Engineering and Technology, Menoufia

University. 65



~X8TTOI}U0D AoundwAT pue J03WUTIB8 038 OUI YITM queTd X8quUTs 8y} J0J WBIIWYP }ooTd N eansty

{

. d.q -

=3

|
I
!
I
!
[
|
|
[
|
|
|
I
(
[
!
i
I
I
i
I
!
|
!
I
I
L
i
I
J

4
|
]
|
}
Vy
|

e
S

1

{

f

l

t

{
[

i |
-

L+

b L.

|




67—

1. INTRODUCTION

, In prev1ous publlcatlons by the author [1-4], the
exponentlal term representing the delay time in
' Laplace domain has been approximated using Padé-type
" approximant [S]Ato_a second order rational "polynoﬁial‘
before applying the‘ sﬁggested techniques based on
either the Lyapunov's DirectﬂMethod or optimal regula-
, 'A tor and poles positioniﬁg and in both ceses,the sinter
planfrwas used as an example to test the qualification
of the proposed techniques.

- - The sintering process itself consists mainly of
mixing iron-ore fines and other necessary materials
(limestone and/or dolomite)with coke breeze as a solid
fuel. Water is added to‘moisten the fines to help the
agglomeration'procesS'ahd to impart permeability to
the mix. Igniting the mix on the strand layer by layer
leads in bonding the grains and a strong agglomerate
is formed. The transportation of the materials from
storage bins and mixing drums to the strand and combus-
tion zone takes about 360 seconds; which is the dead-

time under investigation.

Applying the approximation to the exponential
term will accordingly' increase the order of the

control system Hence, it is of interest to study = the

.~ effect of'lncrea51ng the ‘order of the approximant on

v~~-1;::the.stablllty of the- proposed control ialgorithms by -
Badrah [1-4]. This study is presented in this paper.The
“-% exponential - delay-time ‘term -is approximated to. a
fourth order ratlonal polynomlal according to Baker

[5] to. give



840 - 360 Ls + 60 L?s? - 4 L°s?

840 + 480 Ls + 120 L?s? + 16 L’s® + Lig?

—--—— -~ To obtain a comparable 'study, the ~simplified
model of the sinter plant in [1] is adopted here and
"redrawn in Fig.1. The braer of the whole system is
theref?re increased to sixth.

A micro computer, SINCLAIR ZX-SPECTRUM 48K, was
used to simulate the plant model "and the control
algorithm associated with the state estimator, obser-
ver. The programs have been written in BASIC language

~and located in the Appendix. = K -

2. STATE—SPACE-EQUIVALENCE OF THE SYSTEM

The required krépreéentation of the system in
state-space form can be obtained with the help of the
state-variable diagram given in Fig.2 as follows

i1 = -C,C,x, + 840 x, f 360 L x; + 60 L? x, - 4L°x,
<y = %3

i3 = X,

is = (-840 Xy - 480 LA§3 - 120 L’x4 —16‘L3x +RKX6)/L4

5

which can be written in the general state-variable form:

X =Ax+Bu , y=HKX : - (2)
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and the driving vector B will be

B =

[0

0. .

0 0

0.025]

where_ | -
| -C4 840 —360 L 60 L? -4 L 0
0 S0 1 0 0 0
0 0 0 1 0 0
A =-f —-Q — Qo 0 1 -0 1,(3)
L L L% . L
|0 0 0 0 0 =1/T
B o= [ 0 0o 0 0 0 :1/TC:,(4)
and S S o -
H = 1 | -0 0 | (5)
Taking 360 seconds transportation time 1lag to be
assigned for L and substitution: for C, = 0.0015 and
C2 ='10/3, matrices A and B arerevaluatgd to be
[0.005 840 -129600 7776000 -186624000 O 1
0 0 1 0 0 0
0 0 0 1 0 0
A= 0 0 0 0 1 o |8
0 -5.E-8 -1.03E-5 -9.26E-4 -1/22.5 1.E-10
| 0 0 0 0 0 -0.025;

(7)

The characterlstlc equatlon when calculated from the

(s + 0 005)(s + Q 025)[5‘ + 0 044444 s + 0.000926 s?
+ 0 0000103 CH + 0. 00000005] =0 (8)

The numerical values of the elgenvalues of this system
are computed from eqn.(8).and,are found to be: -0.005,
-0.025, -0.00477345 * 3j0.0058983, and -0.01744878
* j0;0237479 to give a good about the
stability of this system.

indiction
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8. CONTROL ALGORITHM AND OBSERVER DESIGN

As shown in Flg 1, the control law is given by

u 5 - B' P xvl%- o » . (9)
~7The Lyamunov s matrix equatlon ; _ ‘ )
T TatrsPA=TQ O L (10)

where both P ,and» Q fere positive-definite-symmetric
matrlces, has been solved for the diagonal matrix Q
with all elements on the diagonal of the same value as

0.1 x 10‘4, using the lteratlon method explalned by the
~author in [31. ' '

~ Luenberger observer is adopted to estimate the
values of the state variables required for implement-
'ing the proposed technique. This will be of the form :

tebzéEyecER an

N
L]
= I
"

(12)
(13)

(D]
]
=}
[+9)
s

T.A - D.T = E.H : (14)

The elements of vector H are the same as - in eqn.(5),
vector E has five elements and all are assigned to
unity, and the fifth order D matrix is selected to be
diagonal. The elements on the diagonal may be chosen,

according to the given guide in [1-3], as follows

D = diag.[-0.002, -0.0019, -0.0018, -0.0017, -0.0016]
_Ll_fiifr'iff Ll mommOOTO L (15)

The matrlx equatloh, glven by egn.(14), has been

;solved u51ng the Kronecker product method illustrated
by Badrah (1. '
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4. SIMULATION RESULTS AND DISCUSSION

A ééparate computeﬁ program was writtén by the
author to compute the elements of the positive-
~definite-symmetric P matrix as a ‘solution of the
Lyapunov matrix equation, eqn.(10),using the iteration
technique after eleven iterations only._Eqn{(lG) gives
the result of this‘iterafibn. : L R

A second program was written to solve the matrix

observer equation, egn.(14), using Kronecker product

~method explained by the author in details in [1]. The

result is expressed in egn. (17).

Several attempts to'apply some iteration tech-

"niques to solve egn.(14) did not give reasonable

results because both A and D matrices converge semul-
taneously to unit-matrix,leading to no solution. These
attempts were tried to decrease the computer running
time, since the Kronecker product method takes very

long time and requires very big storage memory.

The values of matrix T and matrix P must be fed
to the simulation computer program as a part of the
input data, as shown in Appendix line no 332 through
to line no 363. This program calculates first the
inverse of matrix T after it is merged by the véctor H

and solves the differeﬁtial equations included by

-applying Euler integration method.

A é£é§—inpﬁfiié~appiiéd in a form of 10% increase
-in the set point, R, after a  running time of 600
seconds which is bigger than the dead-time iﬁself.
Fig.3, shows the response of the sinter plant to this
disturbance with a steady state error of'approximately

-2%. The final value is exactly equal to 43.92 +ton
instead of 44 ton. 7



[1.000012438-3
140.253956
~3586.63551
323863.486
2775660.3 |
9.25240774E-3

-l

b
7

£333.333333 |
~322.580645 |
~312.500000
~303.030304 °
|-294.117647

§

i

140.253956
54366241.3 |

1.3702242E+9

1.40376566E11
2.35617786E12
7975.50582

~14786204
~140238427
~133160689
~126577382
-120443118

-3586.63551

1.37022420E+9

2.07973293E11

7.68638407E12 -

1.78165420E14
621163.451

~6.96854434E9
~6.46142074E9
-5.99460790E9
~5.5641814319
~5.16668661E9

323863.486
1.40376566E11
7.68638407E12
5.69282583E14
1.10200375E16
39208368.2

=-5.50933816E11
-5.17486591E11
~-4.86631579E11
-4.58117082E11

-4.31721524EN

2775660.3
2.35617786E12
1.78165420E14
1.10200375E16
2.36297977E17
880010142.

-1.15144838E13
-1.07484151E13
-1.00437848E13
-9.39454008E12
-8.79535623E12

9.25240774E-3]
7975.50582
621163.451
39208368..2
880010142.
3.52024055 |

~50062.973 |
~46529.9354
~43291.7590
~40319.9145
-37586.9925)

(16)

(17)

_EL_
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Also, a start up condition has been tested by
assigning a zero for all parameters.for. a period .of
600 seconds, then a desired value of'40 ton 1is given
to the set point. The response is shown>in Fig.4 and
has a maximum overshoot of 39.34-° ton and a final‘

;_;ﬁﬁﬂ,;msteady state condltlon of 35ﬂ6 ton 1s obtalned

Comparing*these results :with??those_ previously'~-
obtained, given in Fig.5, it can:befseen that there is
no significant effect of increasing the order of the
approximation of the dead-time ékponential term. Also,
the proposed method via Lyapunovfleirect method is

. still simply applied with the higher order system, of
o sixth order here, which shows strength and generality
of the methods suggested and previously investigated by
the author.

f. TCNTLEION

The dead-time approximation to higher ordér
approximant does not affect the‘applicability of the
proposed techniques. The resulting increasiﬁg order
of the whole control system shows the same simplicity,
as before, in selecting - the necessary and adequate
parameters such as the D, E,; and T matrices of the
observer and in solving the Lyapunov matrix equation
but longer computer running time is required. The
system stability and the steady-state error are still
within the acceptable engineering range.

- ... ... . The obtained results confirm the powerfulness and
,generallty of the methods discussed and prev1ouslyi
published by the author ‘and perhaps encourage the
attempts of applylng many other modern technlques on

51mllar'systems containing long delay-time in future.
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APPENDIX

The simulation computer program has been written

in BASIC language and the inverse of matrices can be
computed using the following SUBROUTINE.
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) a= Dwdlag. (=0.0026, 0,002, ~0. 0024 )
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Figure 5 QResponses to an increase of 10% in set point for

different values of the observer D matrix with

a second order approximation of the dead-time.




