Menofia University Faculty of Engineering Shebin El-kom Power Mechanical Eng. Department

Final term exam

Academic Year: 2^{ad} Semester 2018-2019

Year: First Year

Subject: Engineering Mathematics (2)

Code: BES112

Time Allowed: 3 hours Date of Exam: 20 / 06 / 2019

nswer all the following questions:

[100 marks]

Question 1

30 marks

Find the general solution of the differential equations:

[20 marks]

(i)
$$\frac{dy}{dx} = \frac{2 x \sinh \frac{y}{x} + 3 y \cosh \frac{y}{x}}{3 x \cosh \frac{y}{x}}$$

(ii)
$$\frac{dy}{dx} = \frac{y}{2y \ln y + y - x}$$

(iii)
$$\frac{dy}{dx} = \frac{2x+y-1}{4x+2y+5}$$

(iv)
$$\frac{dy}{dx} + y \sec x = \cos^2 x$$

B | Find the general solution of the differential equations:

[10 marks]

(i)
$$\left(\frac{dy}{dx}\right)^2 + 2\left(\frac{dy}{dx}\right)y \cot x - y^2 = 0$$
 (ii) $\left(\frac{dy}{dx}\right)^2 - 2x\frac{dy}{dx} + y = 0$

(ii)
$$\left(\frac{dy}{dx}\right)^2 - 2 x \frac{dy}{dx} + y = 0$$

Question 2

10 marks

- Deduce the general solution of the equation $(x^2D^2 + 3xD 3)y = x$, then check your result.
- B If the acceleration distribution of the planer motion of a moving particle is represented by the two components: $\ddot{x} = 3x + 4y$ and $\ddot{y} = -x - y$. Determine the parametric displacements in x and y direction, then deduce the Cartesian equation of the path of the particle, and finally check your results.

Question 3

20 marks

Test and find Laplace transform of:

(a)
$$t^3 e^{3t}$$
, (b) $\frac{1-e^{-2t}}{t(1+e^{-t})}$, (c) $\int_0^t \frac{\sin t}{t} dt$, (d) $f''(t)$ where $f(t) = \cos 3t + \sin 2t$.

Test and find the inverse Laplace transform of $\frac{1}{s^4+2 s^3+s^2}$ using convolution theorem

Using Laplace transforms solve and check the initial value problem

$$\ddot{\mathbf{y}} + 3 \, \dot{\mathbf{y}} + 2 \, \mathbf{y} = e^{-t}$$

subjected to the initial conditions y(0) = 0 and $\dot{y}(0) = 0$.

Question 4

25 marks

- A If the sequence $\left\{\frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \cdots\right\}$ is bounded between the two numbers a and b, find the general term u_n , then calculate each number:
- B Test the series $\left[1 + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \cdots\right]$ for convergence.
- C Test the series $\left[\frac{1}{3} + \left(\frac{2}{5}\right)^4 + \left(\frac{3}{7}\right)^6 + \left(\frac{4}{9}\right)^6 + \cdots\right]$ for convergence
- **D** 4. Test the series $\left[\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots\right]$ for convergence
- E | Find the interval of convergence of the series $\left[3 x + \frac{9}{2}x^2 + 9 x^3 + \cdots\right]$.

Question 5

15 marks

- Determine the mass m m and the Cartesian coordinates of the center of mass $(\overline{x}, \overline{y})$ of a thin plate bounded by the parabola $y = 2 x x^2$ and the straight line y = x, if the mass density of the plate is $\rho(x, y) = 12 x$.
- Calculate the mass of a thin plate of density $\rho = 3\sqrt{x^2 + y^2}$. The plate has the shape of a circular annulus bounded by the two concentric circles $x^2 + y^2 = 4$, $x^2 + y^2 = 9$.
- Evaluate the mass of the solid volume bounded by the coordinate planes and the planes: x = 1, y = 1, z = 1, where the density of the solid material $\rho = x^2y$.

This exam measures the following ILOs

Question Number	Q2-A	Q2-B	Q3-A	Q3-B	Q4-E	Q5-B	Q1-B		Q2-B	Q3-C	Q5-C
G) 211-	Q4	Q1-A	!								
Skills	Knowledge &understanding skills				Intellectual Skills				Professional Skills		

With our best wishes

Dr. Bilal Ali Maher

Dr. Osama N. Saleh