OPTIMAL REACTIVE POWER PLANNING
-USING GENETIC ALGORITHM |

G. E. M. Aly H. El-Desouki Amany E}-Zonkoly
Faculty of Engineering, ~ Arab Academy for Science & Technology, =~
Tanta University Alex., Egypt
Abstract:

This paper presents a new approach to solve the optimal reactive power
planning (RPP) problem based on a genetic algorithm. The reactive power
planning problem involves optimal placement and sizing of capacitors ina
network such that the power loss cost and investment costs of new VAR
sources are minimum. The genetic algorithm is a kind of search algorithm
based on natural selection and genetics. This algorithm can search for global
solution. The RPP problem is solved in two stages. The first stage determines
the optimal placement of capacitors. The second stage determines the optimal
sizing of such capacitors. The proposed approach incorporates detailed hourly
loading conditions at each bus and achieves a fairly accurate estim te of the
benefits from capacitor placement. The proposed method is applied to the IEEE
14-bus system and the IEEE 30-bus system and its results are compared with
the results of a conventional method. Although this method is not as fast as
sophisticated traditional methods, the applied concept is quite adequate for
planning applications.

Keywords: Reactive power planm'ng — Genetic algorithm — Optimal power
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I- Introduction;

The optimal reactive power planning (RPP) problem refers to the
decision for the locations, types and sizes of reactive power sources which
guarantee a satisfactory system operation and particularly, adequate voltage
levels throughout the system, at a minimum cost. The reduction of the
transmission losses as well as the consideration of the system security and
adequacy are aspects that may also be treated in the statement of the problem.
In general, the mathematical formulation leads to a mixed nonlinear-integer
problem of constrained optimization. The integer variables appear in the
formulation with mathematical representation of:

i) the installation or fixed cost of new reactive power sources at the .
different locations, and
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i) the installation or fixed cost of new reactive power sources at the
different locations, and
it) the discrete availability of sizes or capacities of the reactive sources. [1]
During the past decade there has been a growing concemn in power
systems about reactive power operation and planning. Recent approaches to the
RPP problem are becoming very sophisticated in minimizing installation cost
and for the efficient use of VAR sources to improve system performance.
Various mathematical optimization formulations and algorithms have been
developed, which, in most cases, by using nonlinear [2], linear [3], or mixed
integer programming [4], and decomposition method [5-9]. More recently,
simulated annealing [10] and genetic algorithm [11,12] have also been used.
With the help of powerful computers, it is now possible to do a large amount of
computation in order to achieve a global optimal instead of local optimal
solution.[13,14]

Genetic algorithm (GA) method is apowerful optimization technique
analogous to the natural genetic process in biology. Theoretically, this
technique converges to the global optimum solution with probability one,
provided that certain conditions are satisfied. The GA method is known as a
robust optimization method. It is useful especially when other optimization
methods fail in finding the optimal solution.

In this paper the RPP problem is separated into two stages. At the first
stage, the possible sites for installation of the new reactive power sources are
- determined. The problem in the second stage is solved using GA to decide the
type, size and actual sites for installation of the reactive power sources instead
of determining only the sites using GA as in [1].

II-_Symbols:

N  Total number of buses

NG Number of generating buses

NL- - Number.of load buses

NC Number of buses with capacitors installed

i,j Indexfor buses

Pg;  Real power generation at bus i (p.u.)

Qg = Reactive power generation at bus i (p.u.)

Ps  Real'power demand at bus i (p.u.)

Qs Reactive power demand at bus i (p.u.) _
Q.  Reactive power support from new capacitors at bus i (p.u.)
V;  Voltage at busi{(p.u.) '
Y; Element of network admittance matrix (p.u.)

03  Phase angle of Yj; (radian)

3i  Voltage angle at bus i (radian)
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Qemax Maximum reactive power support possible to add (p.u.)
Qg™ Qg Reactive power generation limits at bus i (p.u.)
Vuin, Vmax ~ Limits on bus voltage levels (p.u.)

III- Problem Formulation:

The reactive power planning problem has been stated to be an-
optimization problem, where the total cost of the installation of new reactive
power sources and the cost of the active transmission power losses are
minimized, subjected to constraints that define satisfactory operation. [1]

A modified optimal power flow (OPF) formulation is used for
allocation and sizing of VAR sources on the load buses. These additional
sources are required to provide the necessary reactive power support at load
buses, more so, during the peak loads. OPF is computed for every hour of the
load curve. The modified formulation of the OPF problem is described
below{15]: '

- Qbjective function:
Total cost = Capacitor operating cost + Power losses cost.

- The system operation constraints:
a) Load flow equations (equality constraints).
Py — Pai = X VI Vi1 Yif cos(0;+5,-5) for i=1--N, excluding the

slack bus

Qg - Qai=- X VIl V{1 Yyl sin(8;+8-8)  for i=1-NG, excluding the
slack bus

Qqi ~ Q& +Qei = DIAYI VJ' l Yij‘ sin(8;;+9;-9;) for i=1--NL

b) Inequality constraints:

Qgi min < Qgi < Qgi max i=1--NG, excluding the slack bus

Vmin < Vi < Vmax i=1--NL

Qci < Qcmax i=1--NL

IV-_Proposed Genetic Algorithms (PGA):

Genetic algorithms are inspired by the mechanism of natural selection,
a biological process in which stronger individuals are likely be the winners in a
competing environment. They presume that the potential solution of problem is
an individual and can be represented by a set of parameters. These parameters
are regarded as the genes of a chromosome and can be structured by a string of
values in binary form. A positive value, generally known as fitness value, is
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used to reflect the degree of “goodness™ of the chromosome for solving the
problem. o

The algorithm starts from an initial population generated randomly, A
new generation is generated by using the genetic operations considering the
fitness of a solution, which corresponds to the objective function for the
problem. The fitnesses of solutions are improved through iterations of
generations. When the algorithm converges, a group of solutions with better
fitnesses is generated, and the optimal solution is obtained.[12]

A- String Representation: [13]
String representation is an important factor in solving the RPP problem
using SGA. In order to accommodate different representations of object
parameters. '

B- Genetic Operations:

1) Initial population generation: Initial population of binary strings is
created randomly. Each of the strings represents one feasible solution
satisfying the problem constraints.

2) Fitness evaluation. The solution strings and each candidate solution is
tested in its invironment. The fitness of each candidate solution is
evaluated through some appropriate measure such as the inverse of the
cost function. The algorithm is driven towards maximizing this
fitness.[13]

3) Selection: Selection models nature’s survival-of-the-fittest mechanism.
In simple GA, a fitter string receives a higher number of offspring and
thus has a higher chance of surviving in the subsequent generation. The
simple GA uses the “roulette wheel” selection scheme to implement
proportionate selection. Each slot on the wheel is paired with an
individual in the population. The size of each slot is proportional to the
corresponding individual fitness [12].

A common way to implement roulette-wheel selection is to:

1- sum up all the fitness values in the current population; call this
value “sumfitness”. It is the total area of the wheel.

2- generate a tandom number between 0 and 1, called rand.

3- multiply sumfitness by rand to get a number between 0 and
sumfitness that we will call roulette value. Think of this value as the
distance the imaginary roulette ball travel before falling into a slot.

4- finally, we sum up the fitness values (slot sizes) of the individuals

" in the population until we reach an individual, which makes this
partial sum greater or equal to roulette value. This will be the
individual that is selected [12].

4) Crossover: Crossover is the process by which the bit-strings of two

parent individuals combine to produce two child individuals. There are
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many ways in which crossover can be implemented. The most primitive
but highly efficient form of crossover is single-point crossover shown
in figure (1). Crossover rate (p.) controls the frequency with which
crossover is applied [12], i.e. in each new population (N*p,) structure
undergo crossover, where N is the population size.

Crossover point ‘
N )
s e R —

] i
'

: Figure (1): Crossover operatlon ,
5) Mutatzon Another important GA operator is mutation. It only acts on one
individual at a time where a bit is inverted before copying from a parent to
a child according to certain probability (rate) pm. An example of mutation
process is shown in figure (2) [12]. The simple GA treats mutation only as
a secondary operator with the rule of restoring lost genetic material . For
example, suppose all the strings in a population have converged toa ‘0’ at .
a given position and the optimal solution hasa ‘1 at that position. The
crossover cannot regenerate a 1 at that position, while a mutation could.
Approximately (N*L*p,) mutations occur per generation where L is the :
string length [16,17]. '

00[1]100110011 —> 00[0]100110011

Figure (2): Mutation operation.

V-_Implementation of GA to RPP Problem:

The systems tested and described are the IEEE 14-bus [1 8] and
TEEE30-bus [19] networks. The following parameters are used for GA: -

Population size: 30

Max. generation: 15

Crossover probability: 0.9

Mutation probability: 0.001

The number of parameters that consist the genetic chromosome is
determined according to the number of load buses that need VAR source ata .
certain  hour. The number of bits consisting the parameter length is determined -
according to the number of steps required to reach the maximum reactive
power demand of the system at a certain hour transformed to binary form.

The results of GA are compared with the results which were obtained
both by applying initial load flow calculations without any compensation and
with the results obtained by applying a conventional method. In the
conventional method, the weak load buses of the system are determined, then a
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reactive power equal to the reactive power of the load at each bus is injected. If
the voltage of any of these buses exceeded the upper limit of the operating
range, the injected VAR value is decreased gradually- starting from the bus
with higher voltage- until all bus voltages are within the specified range.

A- The 14-bus system:

The initial load flow results show that, with no reactive power compensation, there are
under-voltages at almost every load bus during the 24 hour. Thus the reactive power supply
from generators is not adequate to maintain the required voltage profile.

After the reactive power planning is completed, the total reactive power compensation
is summarized in table I It is observed that the voltage profile is within the operating range of
0.95-1.05 p.u. Both voltage limits are satisfied. The VAR sources must satisfy the upper and
lower limits of the required injected VAR at each load bus.

Table I: Results of 14-bus Systém

Variable Initial load flow GA Conv. Method
Lower Upper Lower Upper Limit | Lower Upper
‘ Limit Limit | Limit Limit Limit

V4 (pu) 0.946 1.012 0.95 1.012 . 1 0.95 1.048
\'A) 0.996 1.036 0.998 1.036 0.998 1.036
V7 0.972 1.023 0.98 1.023 0.981 1.031
V9 0.944 1.006 0.958 1.006 0.958 1.006
V10 0.946 1.003 0.958 1.003 0.958 1.007
Vil 0.978 1.015 0.984 1.015 0.984 1.015
\2V 0.992 | 1.015 0.996 1.015 0.996 1.015
V13 0.981 1.011 0.988 1.011 0.988 1.011
Vi4 0.923 0.987 0.951 0.987 0.951 1.032
Qc4(Mvar) | 0.0 0.0 0.0 0.85 0.0 357
Qc5 0.0 0.0 0.0 0.0 0.0 0.0
Qc7 ' 0.0 0.0 0.0 0.0 0.0 0.0
Qc9 0.0 0.0 0.0 7.45 0.0 1.2
Qcl0 0.0 0.0 0.0 1.2 0.0 4.7
Qcll 0.0 0.0 0.0 0.0 0.0 0.0
Qcl2 0.0 0.0 0.0 0.0 0.0 0.0

¢13 100 0.0 0.0 0.0 0.0 0.0
Qcl4 0.0 0.0 0.0 3.2 0.0 15.2
Total Cost in 24 hours (LE) 30283.02 85282.65
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Figure (4): The total cost through 24 hours.
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B- The 30-bus system:

The results before and after reactive power compensation are shown in

table I1. :
Table II: Results of 30-bus System
Variable Initial load flow, GA Conv. Method
Lower Upper | Lower Upper | Lower Upper
Limit Limit | Limit Limit | Limit Limit
V3 (p.w) 0.967 1.024 [1.002 1.024 10992 11.024
V4 0.948 1016 |0.989 1.016 | 0.978 1.016
V6 0.941 1.013 | 0.984 1.013 | 0.975 1.016
V7 0.913 1.003 | 0.964 1.006 | 0.955 1.032
V9 0.95 1.039 | 1.019 1.045 | 0.997 1.045
Vio 0.913 1.025 10997 1.044 | 097 1.042
V12 0.95 1.046. | 1.026 1.048 | 0.994 1.048
Vi4 0.914 1.032 | 1.001 1.035 | 0.966 1.035
V1§ 0.908 1.028 | 0.999 1.036 | 0.965 1.038
V16. © 10922 11.031 [1.005 1.038 | 0972 1.037
V17 0.908 1.021 1099 1.039 | 0.963 1.035
V18 0.888 1.016 | 0.981 1.032 | 0.953 1.044
Vi9 0.882 1.012 10,973 1,033 {0951 1.046
V20 0.888 1.015 | 0.978 1.034 10.954 1.045
V21 0.894 1.018 | 0.985 1.036 | 0.955 1.041
V22 0.894 1.018 | 0.985 1.036 | 0.957 1.041
V23 0.888 1.017 {0.987 1.033 | 0.954 1.041
V24 0.874 1.011 0979 1.033 | 0.952 1.039
V25 0.871 1.007. | 0.98 1.026 | 0.966 1.042
V26 0.844 0.99 0.958 1.009 | 0.955 1.033
V27 0.882 1.012 | 0.991 1.032 | 0.98 1.048
V28 0.932 1.011 | 0984 1.0i1 {0974 1.013
V29 0.833 0.933 | 0.966 1.025 0.9 1.041
V30 0.799 0.979 | 0.951 1.021 | 0.951 1.043
Q3 (Mvar) |0 0 0 0 0 0
Ocd 0 0 o 0 0 0
Qch 0 0 0 0 0 0
Qc? 0 0 0 6.65 0 23.26
Qco 0 0 0 0 0 0
Qclo 0 0 0 3.75 0 0
Qcl2 0 0 0 0 0 0
Qcl4 0 0 0 2.35 0 2.05
clS 0 0 0 2.2 0 1.15
Qcl6 0 0 0 1.35 0 0
Qcl?7 0 0 0 2.75 0 2.1
Qcl8 0 0 0 1.25 0 24
c19 0 0 0 4.95 0 7.37
Qc20 0 0 0 1.1 0 145
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Qc21 0 0 0 3.45 0 84
Qc22 0 0 0 0 0 0
Qc23 0 0 0 1.95 0 2.74
Qc24 0 0 0 3.55 0 2
Qc25 0 0 0 0 0 0
Qc26 0 0 0 2 0 3.57
Qc27 0 0 0 0 0 0
Qc28 0 0 0 0 0 0
Qc29 0 0 0 22 0 238
Qc30 0 0 0 4.65 0 5.55
Total Cost in 24 hours (LE) 114871.1 116895.1

fitness valué

generation

Figure (6): The total cost through 24 hours.
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VIi- Condusion:

In this paper, the optimal RPP problem was solved by minimizing the
total cost which includes the operation costs of new VAR sources and the cost
of transmission power loss. The IEEE 14-bus and IEEE 30-bus systems were
tested. The genetic' algorithm (GA) was used to solve such a problem. The
voltage profile throughout the planning period was improved from the under-
voltage seen in the initial load flow to the required operation range. It was also
found that new VAR sources are installed at or near load buses that exhibit
under-voltage violation. Also it was noticed that the total cost achieved by the
conventional method was greater than that achieved by using the GA method.
The GA is characterised by the lack of assumptions for linearity or convexity.
The resulting analysis accuracy can not be surpassed by any other Al
technique. The results show the effectiveness of the proposed technique in the
area of power system planning,
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