Elmansoura University
Faculty Of Engineering
Electronics and Comm. Engineering Dept.

Linear systems & Networks.

2nd year

June 2012

Time 3 Hours

Attempt the following.

1-For the circuit in Fig.1, the switch was closed for a long time and is opened at t=0, Find $v_{(t)}$. (12)

2- For the circuit in Fig 2 , (i) derive an expression for the transfer function $\,V_{\text{o}}/\,V_{\text{in}}\,,$

(ii) Specify the type of filter and find the cutoff frequency (iii) plot the bode diagram (15)

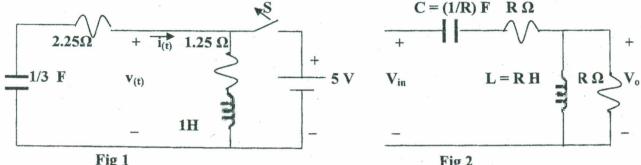
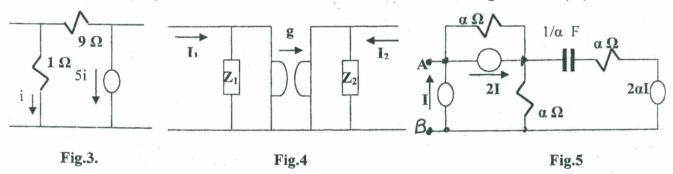
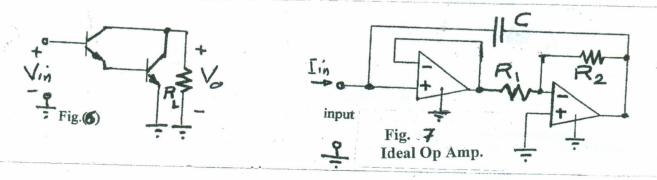



Fig 1 Fig 2
3- Write the matrix state equation for the circuit shown in Fig. 1, and hence find $i_{(t)}$ (10)

4- Determine the hybrid Parameters of the two-port shown in Fig.3. Find the two image impedances of the circuit (15)

5- Find the impedance parameters for the two-port shown in Fig.4 (10)


6- Find the input impedance between A and B for the circuit shown in Fig.5 (10)

7- Write the current and voltage relations of a (INIC) which makes $Z_{in} = -4Z_L$. Determine it's scatterting parameters whem terminated by two equal resistances of 1Ω each. (10)

8- Each transistor in fig.6 has a common emitter Y parameters given by Yie, Yre, Yfe and Yoe. Find an expression for $\frac{V_o}{V_{in}}$ (15)

9-In the circuit of Fig. 7 show that the impedance between the input terminals is equivalent to that of a capacitor of Capacitance = $(1 + \frac{R_2}{R_1}C)F$ (15)

2nd Year Communications Linear Systems & Networks Time Allowed: 3 Hours

من فضلك أجب عن جميع الأسئلة مع إعادة رسم الدائرة في كراسة الإجابة.

- Q.1 For the circuit shown in **Fig.1**: find the input impedance and give your comments?
- Q.2 For the circuit shown in **Fig.2**: find the Y-parameters and then find the 2×2 Z-parameters.
- Q.3 Write the state equation for the circuit shown in Fig.3?
- Q.4 For the circuit shown in Fig.4, find $v_2(t)$ assume zero initial conditions.
- Q.5 Compute the input impedance and transfer function of the circuit shown in Fig.5; network N has transmission parameters: A=-y₄/y₃, B=C=0 and D=1.
- Q.6 Find the Thevenin's equivalent of the circuit shown in **Fig.6**? Assume that the capacitor is uncharged.

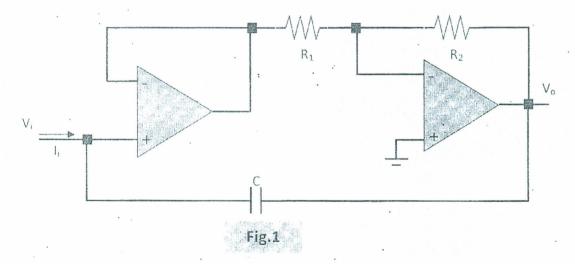


Fig.2

¹ 2nd Year Communications Linear Systems & Networks Time Allowed: 3 Hours

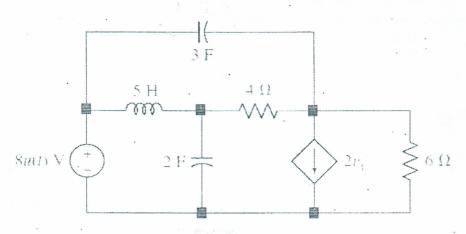
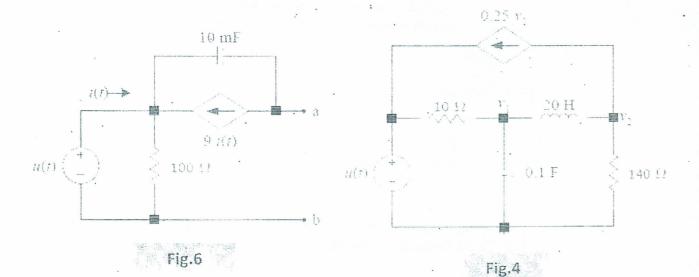



Fig.3

Y₂

+

V₁

Y₂

V₃

V₄

V₇

V₇

V₈

Fig.5 Good Luck
Mohamed Abdel-Azim