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ABSTRACT: Wher the inventory system accommodates more than one item under the effect of one or more
constrained resources, the problem needs to some mathemarical programs. The sofution of these programs is more
complicated and fedious specially when the number of items increased. Therefore, this analysis resons to a new
experimemal model testing different feasible solutions searching for the best ane. The problem formulation, which is
mainty based on the economic order quantity (ECQ) medel is modified to ensure the minimum shift from the
independent single-item order quantities and minimize the cost funchon of different models. Based on
comprehensive equations and simple ratios, the solution procedure carries out the trade offs between all items in Lhe
system and exhibits the different alternatives if exist. No resurictions imposed on the number of jtems. the
number/type of constraints, or the number of parameters in the sysiem. Thus making the develgped heurisuc simple
and practical in solving large problems.
(INVENTORY: CARRYING COSTS. EOQ, CONSTRAINTS. MULTIPLIER: NONLINE AR/ PROGRAMMING)

INTRODUCTION -

Inventory is an idle resource for current or future purposes. An inventory system aims to maintain sufficient
stocks of resources at the right time and minimizes the total inventory cost. It ensures a smooth production
process or business activity. The nature of demand ( deterministic or stochastic) and the rumber of products
(single or muitiple) are the main determinant of the system type; sce Taba (1992).

Analysis of the single-item inventory systems, with no other constraints than the demand ard svstem
constructions, have received a far greater amount of study. Several efficient solution techniques were
developed as shown in Buffa and Taubert (1972), Hax and Candea (1984), Elsayed and Boucher {1985),
Riggs (1976) and Taha (1992). Also, Qualitative sensitivity analysis for inventory-production models of a
single item was bandled in Veinott (1964) . it 13 found that one of the most commoniy used inventory
systems, the order quantity-reorder level (©,r) system, where a fixed order quantity { is always placed when
the inventory level decays to a fixed level #; see Zheng (1992) , and Brill and Chaouch ([1993). In spite of
insufficiency, the conception of single-itern models is very important to construct a multi-item model. So,
EOQ model is selected to exhibit an application for the model developed in this paper. EQQ model was
discussed in the most of the cired literature. When the system accommodates nusltiple items with additional
consirgints, the single-item techniques fail 1o solve the problem. Therefore, it needs to larpe-scale
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mathematical programs. The problem becomes more complicated when the oumber of items, constraints, or
sysiem parameters increases.

The existing literature is scarce on inventory systems from the type (O,r) dealing with multi-items wath
congiraints.  The problem is how much the difference between the single-item and the constrained mult-item
quantities. Sometimes the inventory carrying charge can be viewed as a policy variable; a higher value should
be used to reduce the order quantities, or lower service levels should be used. These adjustments depend on
the type of constraints violated, see Schroeder (1974) for a detailed discussion. Bus the policy of changing
carrying charge is not an eventual solution because it may be imposed as an econormeal requirement. It
seems that multiple items require relevant formulations to conduct the inferaction between ners under
constrained environment. Some formulas have been presented in Peterson and Silver {1977).

Manne {1958) introduced, among the first approaches, an integer programming formulation for the muiti-
itern capacitated inventory system and proposed 1o solve a relaxed linear programming problem. This
problem was found large and difficult to solve when items share more than one resource. Dzielinski and
Gomory (1965) adapted Manne's problem by using a decomposition procedure in thetr slow algorithm.
Lasdon and Tersung (1971) proposed an alternate approach to Manne's LP problem. Thev solved the
problem directly by using a revised simplex method and a generalized upper bounding procedure. Also,
Kleindorfer and Newson (1975) treated Manee's problem by using Lagrangian dual problem of the original
problem and established a relation between both problems.

The most popular two methods used to solve muiti-iem inventory problems are the Lagrangian method and
the fixed<cyvcle (equal-order-interval) method. The former assumes that orders are received simultaneously
without phasing orders for the different items. The latter adds constraint of having the same cycle for all
items and allows the phasing of orders for the various items, which may not be required. Lagrangian method,
which solving nonlinear programming model, happens to yield correct solution when the objective function is
convex and the problem has a single linear constraint (convex space), see Taha (1992). Rosenbian (1981)
presents a detailed discussion for both methods. Parsons (1966) reported that all unconstrained quantities
should be reduced by the same factor, the ratio between available and required resource vaiues. Also, see
Elsayed and Boucher (1985).

Hartley and Thomas (1982) examined two-item wventory system with a capacity constraint and
distinguished between policies of fixed order quantities through numerical examples. The analysis involves
the Lagrangian method and the fixed-cycle method and reported that the former method rarely produces the
optimal policy. Bitran and Matsuo (1986) discussed relations between the original problem and Manne's
problem. They presented an approximation scheme for the multi-item lot size problem through a linear
convex combination of the optimal solution of the Manne’s LP problem. They computed the error bounds for
the combination and itroduced the concept of relative infeasibility. Finally, they provided a bound on the
duality gap of the Lagrangian dual problem which was found the same as that of Kleindorfer and Newson
{1975).

Recently, Golany and Lev-Er (1992) bave presented a comparative simulation analysis for several multi-item
inventory models. A comparison to single-item models was included. An atiempt was made to improve some
existing models and introduce new ones. The results cam be used as limited guidelines to practitioners by
shedding the light on shertcomings of some models. But, no formulations appear to help in an extensive
work based on this research. Hwang et al. (1993) have studied multi-item economic lot size models which
amack setup reduction and quality improvement and developed a new procedure. Their work was reviewed
and extended by Moon (1994) who introduced a complete formulation and used the Lagrangian method in his
analysis, More recently, Davis (1995) has proposed a two-stage approach to solve the capacitated multi-item
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lot scheduling problem. The formulation, which 1s solved beuristically, is a combination of a nonlinear
objective function and an integer program. An improvement 10 the scheduling of econonuc lot size production
runs has been defined.

The aim here 13 to present a new simple procedure to solve the multi-item inventory problem. It differs, in
structure, than thos¢ in the Literature. It does not depend on the formulation of the problem. But it is
applicable lo a general formulation for (0.r) system where r may be an excess, a shortage, or zero. It
searches for the optimum solut:on and near alternatives amongst all feasible solutions An exampie problem
is solved 1o Jlustrate the procedure.

PROBLEM FORMULATION

The mult-item problem is dealt with first by reating each item in an independent fashion, and the optimal
order quantity and all related variables can be estimated using the single-item techniques presented in the
literature. cited before. If the solution does aot violate all imposed constraints, the optimal order quantities are
aken as found; otherwise the constraims will inversely affect the order quantity of each itern. Of course,
when ar least one constraint is active {not redundant), the applicable order quantities will be less. In such
case, for » items, this problem has been simply formulated as

Minimize TCQ,. 0. .. 0= 0,D,1Q, +1C,0, /) )
2=t
Subject to
250, 5R )
Q2,20 (3)
where

T total multi-item mventory cost,

O; : order quanuty of 1tem ,

0, : order or setup cost of item J,

D; : annual number of units demanded from item j,

C, : purchase price or production cost per unit of item J,

i :annual inventory carrying cost rate for all items,

+(;; inventory carrying cost {$/unit/year) of itemn §,

R : maximum resource allowed (investment, area, ..., eic.),
p 5 value of resource required per umit of item ;.

This nonlioear programming problem, which is restricted to the EOQ model, has been solved by using: the
Lagrangian and the fxedcycle methods. Refer to Rosenblant {1981), and Elsayed and Boucher (1985).
Assurme that ftems are received instantancously without quantity discount. Further, the demand is well
defined as an independent deterministic constant and the carrying cost associated with each item does not
change due to interacting with other items. The setup cost associated with each order is fem dependem but
not me dependent. Given that the system is described by ((,7), the objective function {1) can be stated in a
form accommedates different models as

Minimize  TC(Q,.r) = 310,D, 1Q, +1C/,{Q, .+ f(0, .+ +/,(Q, 1)) +b 4
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where b 15 constant and r is the reorder level which may be constant or variabie. It is very difficult to
optimize this function using mathematical programs, But when using the proposed procedure, its role will be
limited to substitution. It will be used oniy to assess the total inventory cost of each tried point, i.e. order
quantities, after using the single-item components in the beginning of solution. The first component in right
side always exists in all systems where one or more of the others may disappear according to simplification
assumptions. Given that the available resources are wholly allocated to the system, constraint (2) will be
relaxed to an equality as

=

29, =R ()

-

This to minimize the shift from the criginal independent (single-item) order quantities which actually lead to
the minimum total inventory cost function at all. This represents zero residual constraunt which will be used
to make trade offs berween all items in the system; therefore it is considered the controller of the procedure
developed in this paper. This procedure does not need to solving mathematical programs, so it is capable of
conducting the experiment to nonlinear constraints, Constraint (5) can be, therefore, stated as

5.1, \0)=R 6

The objective function (4) and constraint (5)/(6) beside constraint (3) represent the gencral formulation
extracted for linear or nonlinear constrained problem. It does not affect the efficiency of the procedure which
reduces the problem to just simple mathematical calculations.

SOLUTION PROCEDURE

To solve the problem under the former formulation, a solution procedure witl be elaborated in comprehensive
steps. Several notations and definitions will be used and explatned internally through the procedure.

1-Obtain Q,', the single-itemn optimal order quantity of item / which represents the maximum order quanticy
allowed when all items are integrated and violate the imposed constramt. For this purpose, use the EQQ
model or any different {(,7) model accerding to the imposed assumptions and nature of the system.

2-Check the control of the imposed constraints. If all constraints are not active, accept the current solution;
otherwise, release the inactive constraints and continue.

3.Fix n-1 items at ;" and solve constraint (5)/(6) for the remaining item; it may be negative, Repeat this for
the #-1 items to get the minimum order quantity, @ , of item /. Intuitively, the optimum constrained order
quantity of item J, Of, falls between these two quantities. To determine the latter quantity, an experimental
quantity, Q/, is assumed representing all feasible and infeasible solutions. Where @,” <@, 2@, for item f.

4-Get an initial solution for Q' by selecting arbitrarily any item (start item: 5) at its O, Jj=s. In turn, the
remaining items reset at /=0, , j#s. Note: an item may start infeasible (just negative) and switches after
several iterations.

%-Substitute into the right hand side of objective function {1)/{4) to get TC of the current solution.

é-Increase Q. by an arbirary incrememt [ units; if the start item reaches O;", g0 to step $. This increase
violates constraint (3¥(6) by I, assuming linear, which must be deducted to keep the mentioned constraint



Mansoura Engineering Journal, (MEJ), Vol. 23, No. I, March 1998. M. 5

unviolated. If the constrant is nonlinear, / will take the order of the starting item . The deducted value Ig; is
pantitioned between the remainung items as

ip, =Y q,p,.1%5 5]
where g; is the number of uruts that must be deducted from item /. To determine g, for each item, a margnal

reduction muitiplier & will be heurstically proportioal to a partition rarie A, This ratio wdicarcs the
relanive effect or load of each item on constraint (5)/(6). The value of 4,15 given as

A& =00 1500 j=s5 (3)
Then &, parts /o, as
lp,=% A,(Up).j=2s el

Then, by substituting from Eq. (3) into Eq. (9) and comparing the components of nght sides of the resulted
Eq. and Eq. (7), the value of ¢, is obtawed as

Q) = ‘f[no:Q}l ‘FEP;QJ’ }'} =5 [10)
By dividing the two sides of Eq. (10) by /. the marginal reduction mulbplier & is extracted as
a,=1p0; 1T8,0)izs (1)

The value of ¢ 15 not restncied to a fraction except in case of finding p, near to . It is a positive value
vanies depending on the experimental {or tried) order quantities. This value is an indicator for resource
change of item ;.

7-Compute the new experimental order quantities of the reaming iterns as
Q}"_Q;‘-q;!)‘l*s (Iz)

Which represents a recursive equation, [n addition to the current order quantity of the start item, we¢ rmaintain
a soludon for the problem. Go to step 3.

8-Select ) for the n items which minimize the objective function as an experimental solution for @;°. Note
that the maximum accuracy will be reach when the value of the increment, /, is small as possible, otherwise
we can resort to the graphical plotting and interpolation to estimate approximately the best order quantities.

The solution procedure is applicable for the systems subjected to more than one resource simaltaneousty. For
simplicity, each of them can be satisfied separately and finaily we select the order quantities which satisfy all
of them together.

To facilitate the procedure, a computer program is comstructed. It can be considered a computer aided
procedure because the process is similar to what made in the discrete simulation processes. The prograra
needs to few seconds to solve the probiem. The program registers all solutions and alarms for those mfeasible
which may appear only during few iterations at the beginning,
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COMPUTATIONAL RESULTS

The proposed procedure is demonstrated oumerically by using a case problem presented in Elsaved and
Boucher (1983). The system accommodates three items. their data are given in Table 1. The management has
an upper limit on the wvestment of $16,000. The inventory carrving cost rate for each item is 0,18 and no
shortages are allowed.

Table | An Inventory System Data.

Item } ftem 2 Hem3
Annval demand Dy 1300 1500 2500
Unit cost ¢, 360 $30 $80
Setup cost O, %60 $60 360

The steps of the solution procedure will be conducted in the given sequeace using the computer program, The
single optimat order quantities are found using EQQ model such that

Q, =J20,D,HC, =12,..n {13)

0'=129.10, 0."=182.57, and ¢,'=144 34 units which represent the maximum quaatities, The wventory
investment corresponding to these quantities is $24,770 > $16,000. Use the equation 600"+ 300y + 800,
= $16,000. Then, the minimum quantities are ¢, =-17.07, Q> =-109.77, and Q3 =34.7 units. The negative
values do not represent feasible solutions because they violate constraint (3). However, starung with a
megative value does not affect the experimental results around the best solution. Table 2 shows a part of the
oucput  gained from the program taking /=2. Hence. Of=82.93, 118.23, and 93.47 units with 7C=54891.339
besides alternatives differ by few dollars.

Table 2 A part of the program output.

Experimental Quantities

QL Q2 Q3 Cost $ Resource $§
76.93 122.09 96.52 4901.161 15999.980
78.93 120.80 95.50 4895.926 1589¢9,.9%0
80.93 119.51 94.48 4892.682 15999.95%0
82.3913 118.23 33.47 4891. 339 15999 . 950
84.93 116.94 92.45 4851.821 15999.99%0
86.93 115.65 91.43 4894.058 1589%.,95%0

CONCLUSIONS

In production and business, most inventory situations involve multiple items. If single-item systems are used,
the resuiting order quantities could violate the available space, purchasing budgets or other economical and
environmental constraints. Therefore, the problem requires some formulations sensitive to the interaction
berween items. The objective function is always nonlinear due to the procurement cost, thus making
ponlincar programming the most suitable formulation for exact solution. Moreover, the solution of large
scale programs which augment when the number of items and/or constraints increases, is computationally
difficult specially in case of existing nonlinear constraints.

Here, the developed solution procedure does not resort to solving the nonlinear programming model, but it
searches the best solution experimentaily. So, the problem is formulated in a general fashion to accommodate
several systems. It does not restrict the number/type of constraints or the shape of objective function/feasible
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area (convex , concave). Thus making it practical and reliable. It carries out the computations through
simple equations, ranos, and multipliers; this needs CPU seconds using the developed program. Moreover, It
can be c¢oncluded that the procedure solves an exact form heurisnicaily, The procedure exhibits all feasible
solutiens including the best one. The solutons around the best one can be considered different aiternarives
because they 'slightly differ; this property adds to the advantages of the procedure. Furthermore, ft can be
extended to different inventory environments.
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