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MODELING INERTIAL SENSOR ERRORS USING
ALLAN VARIANCE
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ABSTRACT

Inertial navigation systems (INS) can provide high-accuracy position, velocity, and attitude
information over short time periods. However, their accuracy rapidly degrades with time
due to inertial sensor errors. To damp down the error growth, the INS sensor errors should
be properly estimated and compensated before the inertial data are involved in the
navigation computation. Therefore, appropriate modeling of the INS sensor errors is a
necessity. Ailan Variance (AV) is a simple and efficient method for modeling and verifying
these errors by representing the root mean square (RMS) random drift error as a function of
averaging time. Allan variance can provide information on the types and magnitude of the
various error terms. This paper uses the AV technique to analyze and model different types
of random errors residing in the measurements of Micro Electro Mechanical System
{MEMS) based inertial sensors. The derived stochastic error mode! will be further included
in the INS error model for integrated navigation system, once the correctness of the model
is verified. Finally, the paper presents the test results and model validation.
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1. INTRODUCTION

An Inertial Navigation System (INS) is a
system that calculates the position,
velocity and attitude of a vehicle with
shortterm stability due to the noise
characteristics of its inertial sensors.
Inertial sensors inherently contain errors
in their output. . The errors of inertial
sensors are classified into deterministic
errors and random errors. In general,
deterministic errors are estimated by
calibration and therefore, they can be
removed from the raw observations. On
the other hand, random errors of inertial
sensors are a mixture of several basic
errors such as white noise, random bias,
exponentially correlated (Markov) noise,
rate random walk and rate ramp.
Therefore, the errors must be identified
and modeled before engaging in an
inertial system.

The frequency-domain approach for
modeling noise by using the power
spectral density (PSD) to estimate the
transfer functions is straightforward but
difficult for non-system analysis to
understand. The Allan variance (AV)
method is known to be simple and
reliable in identifying a model from a
signal of mixed noises. Allan variance is
a time domain analysis technique
originally developed to study the
frequency stability of oscillators [2, 4]. It
can provide information about the types
and magnitude of the errors residing in
the measurements.

This paper applies the AV to characterize
MEMS based inertial sensor errors
through identification of the error
statistics. The procedure is as follows:
The characteristic curve is first obtained
by applying the AV algorithm to the
entire data. The curve is then measured to
determine the types and magnitudes of
certain random errors possibly residing in

the data. Finally, the random errors are
identified and modeled.

The paper is organized as follows;
stochastic modeling of different random
errors are discussed first, mathematical
definition of the power spectral density
(PSD) and the AV and their relationship
are summarized. Using this relationship,
the behavior of the characteristic curve
for a number of prominent noise terms is
determined. The test results are presented
and verified.

2. STOCHASTIC ERRORS

As the name suggests, the errors are
random in nature and there is no
repeatability. Even if an experiment with
the same instrument and under same
conditions was repeated, the random
errors that encountered will turn out to be
different in different cases. The random
errors typically consist of white noise,
random bias, random walk, Gauss
Markov, etc. Random errors should be
modeled stochastically. In stochastic
modeling, & model is hypothesized which,
as though excited by white noise has the
same output characteristics as the unit
under test [11].

The most typical stochastic processes
used to model the dynamics of the inertial
SENsOr errors are:

2.1 White Noise
White noise w(t) is defined as a
stationary random process having a
constant spectral density function (g). A
number of random processes can be

generated by passing white noise through
a suitable filter [9].



2.2 Random Constant Model’
The random constant (RC) is a non-
dynamic quantity with fixed but random
amplitude; its continuous and discrete
expressions are given respectively by
[11.
() =0,

x.t+1 = xk

x(0) = a, a)

The initial condition a, is a random

variable whose distribution is presumed
to be known. A random constant is an
appropriate model for turn-on to turn-on
biases of inertial sensors as these biases
can change from one trajectory to another
but remains fixed during the specific
trajectory.

2.3 Random Walk Model

Random walk (RW), also called Wiener
process, is defined as the integral of the
white noise with initial conditions zero.
The continuous analog of random walk is
the output of an integrator driven with
white noise. A RW can be described
through the following differential
equation in continuous time domain {11]:
x(t) = w(t) @
From this equation, it can be seen that
RW can be generated by integrating an
uncorrelated random sequence W(t). In
discrete time, the process can be
described through the following equation
9}

X, =X, +twW, 3)
So, the discrete-time RW model can take
the form of Eq. (3). Also, Allan variance
analysis can be used to estimate the
variance of the driven noise w, (see

section (4) for Allan variance details).
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2.4 Gauss Markov Model
Gauss-Markov processes (GMP) are
stationary processes that have exponential
autocorrelation functions.  The GM
process is important because it is able to
represent a large number of physical
processes with reasonable accuracy and
has a relatively simple mathematical
formulation {9]. A stationary Gaussian
process that has "an exponentially
decaying autocorrelation is called first-
order GM process. For a random process
x(t) with zero mean, mean squared error
o?, and correlation timeT,, the first-
order GM model is described by the
following continuous-time equation [9]:

x(r)=—-,r‘—x(t)+w(t) @)

The autocorrelation function (see Fig. 1)
of the first-order GM modetl is given by

(9}

|
R@)=Exx(+e)]=cte = (3)
Where (1) is the time shift, T. is the

correlation time, and o is the variance at
zero time shift (7 =0 ). From Eq. (4) two
parameters namely, T, (correlation time)
and o! (driven noise variance), are
required to describe a GM process

Fig. 1 The autocorrelation function of the
first-order Gauss-Markov process.
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The first-order GM process in discrete
time can be written as [10]:

Ve
=€ X, tw, ©)
And the associated variance can be given
by [10]:

W =0k (l (-:_{M/%c ) (7

So, the discrete-time first-order GM
model can be applied using Eq. (6) and
the variance of the driven noise w, is
given by Eq. (7). The first-order GM
process is one of the most commonly
applied shaping filters in integrated
navigation systems because the bounded
uncertainty characteristic of GM process
makes it the best model for slowly
varying sensor errors such as residual bias
[10].

3. POWER

DENSITY (PSD)
The PSD is the most commonly used in
representation  of  the  spectral
decomposition of a time series. It is a
powerful tool for analyzing or
characterizing data and stochastic
modeling. For a stationary process, the
basic relationships between the two-sided
PSD and autocorrelation function of a
signal are Fourier transform pairs [11], as
shown in the equations below:

S(w)= °fK(r) e ™ dr ®

SPECTRAL

The transfer-function form of the
stochastic model may be directly
estimated from the PSD of the output data
(on the assumption of an equivalent
white-noise driving function). For linear
systems, the output PSD is the product of
the input PSD and the magnitude square
of the system transfer function [11].

wepee (W)= G(W)G( WP e (W) 9

Where
G(jw) System transfer function.
Seww  Output PSD
S.. InputPSD

Thus, for the special case of the white-
noise input, (S,,, is equal to some

constant value), the output PSD directly
gives the system transfer function.

4. ALLAN VARIANCE

The Allan variance [1, 2, 3] is a method
of representing root mean square random
drift errors as a function of averaging
times. It is simple to compute, and
relatively simple to interpret and
understand. Its most useful application is
in the identification and estimation of
random drift coefficient in previously
formulated model equations given in
section (2). The attractiveness of this
method is that, the Allan variance, when
plotted in logarithmic scales can
discriminate different contributing error
sources by simply examining the varying
slopes on the Allan plot.

Given the angular rates or acceleration are
recorded at a constant time interval?,, a
collection of N data points can be
reformed to be X=N/M clusters where M
is the number of samples per cluster, as
shown in Figure 4.

i Te
123 I : h-ll]/ ¥
b Ny

Fig. 4 Schematic diagram of the Data
Structure used in the Derivation of Allan
Variance
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A time T is associated with each cluster
which is equal to (nt, ).
Then, the average for each cluster:

. M

0,(M)=>D,; k=1..K (10)
ial

The Allan Variance from the cluster

averages is estimated as follows:

P05 O )-B,00) 11

There is a very important relationship
between Allan variance and power
spectral density (PSD) of a random
process [8]:

(1) =4[5, ()8 @D 12

Where S,(f) is the power spectral
density of the random processx(r). Eq.
(12) states that, the Allan variance is
proportional to the total power output of
the random process when, passed through
a filter with the transfer function of the

formsin® (x)/(x)’ . Eq. (12) is the focal
point of the Allan-variance method.

5. NOISE IDENTIFICATION
USING ALLAN YARIANCE

In this section, a description of

identification and estimation of various

noise terms using a log—log plot of O'(T)

versus T is presented. Expressions for the
PSD of different types of random
processes are given and from them, the
Allan Variance for the corresponding
noise terms is calculated using Eq. (12).
The following description will make it
clear that different noise terms are
represented by different slopes on a
log—log plot of o versus T. Thus, by
noting down, the values of slopes present

in that graph, the error terms present in
the tnertial sensor can be identified.

5.1 Angle (Velocity) Random Walk
The high frequency noise term that have
correlation time much shorter than the
sample time can contribute to the gyro
angle (or accelerometer velocity) random
walk. These noise terms are all
characterized by a white-noise spectrum
on the gyro (or accelerometer) rate
output. The associated rate noise PSD is
represented by:

S, (w)=N? (13)
Where S,(w) is the PSD of white noise.

Substituting Eq. (13) into equation (12),
and performing the integration yields;

o (r)=" (14)
Then,
o{r)= (1)

As shown in Figure 5, Eq. (15) indicates
that a log-log piot of o(T) versus T has
a slope of —1/2. . Furthermore, the
numerical value of N can be directly
obtained by reading the slope line at 7=
1.

Angle random walk
«10 -r T

: Stopes A2

et

Allan Slandard Deviation [Deg/s}

1w ' 1

Ciuster Time [s]
Fig.5 O'(T) Plot for angle random walk
(after IEEE Std.952-1997).
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5.2 Rate Random Walk
The rate PSD associated with this noise is
KZ
S ¥ (W) = (1 6)
w

where X is the rate random-walk
coefficient.
Substituting (16) into (12) and performing
the integration yields;

KT
O = N an
Then,

T
O = KJ; (18)

This indicates that, the rate random walk
is represented by a slope of +1/2 on a
log-log plot of o(T) versus 7, as shown
in Figure 6. The magnitude of this noise,
K, can be read off as the slope line at 7=
3.

i Reate rendom walk
W v T T
= ¥ X
- T
2 ¥
Q :
5
"
’g . Th
Qw T
g
=1
@
4 E
E ._..é..J
2 1
"" ¢l : U *
W 1 10
Ciuster Time [s}

Fig. 6 o(T) Plot for rate random walk
(after IEEE S5td.952-1997).

5.3 Exponentially Correlated
(Markov) Noise

This noise is characterized by an

exponential decaying function with a

finite correlation time. The PSD for such

process is:

2T o)
5,(0)= 1 +(aT.) (19)

where 0, is the noise amplitude and

T is the correlation time.
Substitution of Eq. (19) in Eq. (12) and
performing the integration yields:

()= ’[ ﬂ{s Tt ”H

(20
Figure 7 shows a log-log plot of square
root of Egq. (20). It is instructive to
examine various limits of this equation.
For T much longer than the correlation
time, it is found that:

a’ma@@;ﬁi for THT,
@1

Which is Allan variance for angle
(velocity) random walk where N =

C.prl. is the angle (velocity) random

walk coefficient. For T much smaller than
the correlation time, equation (20)

reduces to:
2

o} (T) = Za

T Jor T(T,

(22)
which is the Allan variance for rate
random walk. Table 1 gives the
relationship of the various random
processes and the Allan variance.

N Correlated noise
— e s  EE T
§ & lﬁi—i i
] b
THaE
§
= i) i
g Siopa= V2 P,,i",i:'/
10’ =
IR A
k2 iGi s
g =
] i
@ Jid
gV
2 o
10!
10

=
°=

Cluster Time {s)
Fig.7 a'(T) Plot for correlated noise
(after IEEE Std.952-1997).
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Table 1 Summary of relation between
Allan variance and different noise
sources.

5.4 Combined Effects of All Processes
In general, any number of random
processes discussed above (as well as
others) can be present in the data. Thus, a
typical Allan variance plot looks like the
one shown in Figure 8. Experience shows
that in most cases, different noise terms
appear in different regions of (7). This
allows easy identification of various
random processes that exist in the data. If
it can be assumed that, the existing
random processes are all statistically
independent; then, it can be shown that,
the Allan variance at any given T is the
sum of Allan variances due to the
individual random processes at the same

T.{4].

-

:
L

Standard Atan Yarisce G

S{— D lacabidity
—— Rate Rardom Wak

1 hr Chister Tioe (1_'}__

Fig. 8 o (T) Allan variance analysis noise
terms results (IEEE Std. 952-1995, 1998)

6. REAL DATA ANALYSIS
In this section, random noises of inertial

measurement unit (IMU) type Xsen MTi

E.7

will be analyzed using Allan variance
method [7]. Xsen MTi IMU has three
orthogonal angular rate gyros, three
orthogonal accelerometers, three
orthogonal magnetometers and a 16-bit
A/D converter. Software MatLab program
as a Graphical User Interface (GUI) was
developed to calculate the Allan variance,
autocomrelation function, and power
spectral density of the collected data, and
to simulate various inertial sensor errors
for validation purpose. The equipment
used in this test are shown in Figure 9.

" Fig. 9 test set up to collect IMU data.

6.1 MTi Allan Vriance Analysis
Four hours static data were collected from
the Xsen MTi IMU at 100Hz sampling
rate. The raw data output from the IMU
(voltage values) were first converted to
acceleration and angular rate. By applying
the Allan-variance method to the whole
data set using the developed sofiware
Mat_Lab program, a log—tog plot of the
Allan standard deviation versus the
cluster time is shown in Figure 10 for the
gyro data. The results clearly indicate that
the angel random walk noise is the
dominant error for the short cluster times
{(slop -1/2), whereas the bias instability is
the dominant error for the long cluster
times (slop zero).
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, Alian Standard Deviation vs. Cluster Times
ERETTR T E T AT . ,

W EEThmeEs

tHeBERIn T HET

Allan Standard Deviation [Deg/s)

.4

10? 10 10’ 10

C;Lsmr Times (sac)
Fig. 10 Rate gyro Allan-variance results.

To extract the different noise parameters a
straight line is fitted to the plot and the
noise coefficient can be read out. For
example, if the white noise coefficients
should be obtained, a straight line with
slop -1/2 would be fitted to the log-log
plot of the square-root Allan variance.
The white noise coefficient is obtained by
reading the slope line at T=1 as shown in
Figure 10. Therefore, the same procedure
carried out in order to extract the noise
parameters contaminated in the sensors
data. The estimated noise coefficients for
the rate gyro XYZ-axis are given in table
2.

Table 2 Identified error coefficients for

Rate gyros XYZ-axis, using Allan

variance.

Nit | Agdmim | Bisnebliy | Rermbe wl
s | bl | )

Nradlt|
X §ind < Lled ¥
) fésd 104 VA
4 i3 §047e! NA
Similarly, the different errors of the
accelerometers can be characterized
through analyzing the curves in Figure
11. Table 3 lists all the identified error
coefficients for the accelerometers.

., Adlen Standard Deviation vs. Cluster Times
W T o ¥

g

[ BRI
i Rif
18303 {110
e

{iighnmas

Allan Standard Deviation [mve)

w:n“ = 10" .m‘ 10" 1w ;u “|'o
Cluster Times (sec)
Fig. 11 Accelerometer Allan-variance
results.
From Figure 11, one can find that, the
white noise is dominant at short time
clusters for the accelerometers, similar to
the gyros. At long time clusters, the rate
random walk noise is dominant for the
accelerometers of XY-axis and the bias
instability is almost dominant for the

accelerometer of Z-axis.

Table 3 Identified error coefficients for
accelerometers, using Allan variance.

Arlacees |Vibdtymbnwdt | Bas | Accdenton
nis i.ﬁ mabdty | Random walk
s mis st
X $3e4 a4 150§
Y 894 174 Tied
Z 8 §ed o4 hizY

7. MODEL VALIDATION
The statistical characteristics achieved
using Allan variance in fact represent the
stochastic models parameters given in
section (2). These stochastic models are
used to simulate sensor stochastic errors
for comparison to the experimental data
from the actual sensors [5, 6]. Software
Mat _Lab programs was developed to
calculate the Allan variance,
Autocorrelation function, power spectral
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density and to simulate various stochastic
inertial sensor errors for validation
purpose. Figure 12 shows the interface of
these Mat Lab programs as a Graphical
User Interface (GUI).

(N R — e e )

Fig. 12 stochastic error simulator for
inertial sensors

The simulated sensor models, once
verified, can be used by a navigation filter
such as, Kalman filter, to provide
optimized estimation of navigation
parameters PVA.

For example, Using these Mat Lab
programs from the interface (GUI) shown
in Figure 12. The actual sensor data of the
Xsen IMU X-axial gyro was loaded from
text file, and then the Allan variance of
this experimental data was determined
and plotted just by pressing the Key
“Allan var” on the GUI; Figure 13
presents Allan variance of the
experimental data (blue curve). The
statistical parameters extracted from the
determined Allan variance fed to the
stochastic sensor simulator in order to
generate simulated sensor data. The Allan
variance of the simulated sensor output
was plotted in the same Figure 13 for

COMmparison purpose.

. Adlan Standard Deviation vs, Cluster Times

0 prsTmo T 0
¥ i

Allan Standard Deviatlon [Deg/s]

5
10 T

1wt 10"

Cmster T;:'m (s:c)
Fig. 13 Allan Variance Comparison of

Experimental and Simulated Data

The close match of the Allan variance of the
experimental data and the simulated data for
gyro-X indicates that the estimated error
coefficients for the Xsen MTi are correct, and
sufficient to model its stochastic errors. The
same process was carried out for all other
sensors and the results were acceptable.

CONCLUSION

The Allan Variance is a simple and
efficient method for identifying and
characterizing different stochastic
processes and their coefficients. Through
some simple operations on the sensors
output, a characteristic curve is obtained
which used to determine the types and
magnitudes of certain random errors
possibly residing in the data. Therefore,
the statistical parameters of the stochastic
errors residing in the measurement data
were determined using Allan variance.

Four hours static data have been collected
from the Xsen MTi. The close match of
the Allan variance of the experimental
data and the simulated data indicates that
the estimated error coefficients for the
Xsen MTi are cormrect, and sufficient to
model its stochastic errors. From the
testing results the conclusion can be
drawn that the dominant noise type is
angel (velocity) random walk noise for

E.9
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both gyros and accelerometers for the
short time clusters. For the long time
clusters, the dominant error for the gyros
is the bias instability but for
accelerometers the dominant error is bias
instability and rate random walk.

Finally, since the statistical parameters
of the inertial stochastic errors identified
and quantified, an emror model can be
derived, in order to be used as future
work in the integrated navigation system.
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