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Abstract: The subject of the present work deal with the issue of filling the large gap 

between bounded Hölder function and its envelope. For this purpose, the compensated 

convex transformation is used to obtain the radius of the locality property for Hölder 

functions. The Hausdorff stability for  -compensated convex transformations for 

Hölder functions is confirmed. 

keywords: Bilal distribution; censored data; parameters estimation; lifetime performance index. 

1.Introduction  

The general (lower, upper and mixed) 

compensated convex transformations (For 

short, CCT) are a tight approximation method 

of functions. Zhang [8] presented the concept 

of the general CCT and their properties such as 

the locality property. The locality property of 

the CCT for bounded functions was presented 

by Zhang et al. [15].  Also, the locality property 

of the CCT for Lipschitz-continuous functions 

was presented by Zhang et al. [11]. The 

importance of this transformations appears in 

many fields such as singularity extraction, 

image processing and the interpolation, see [5, 

13]. It is notice from the work of Zhang [8] that 

the primary tool for studying the general CCT 

of a given function is the convex envelope of 

the function. Since the convex envelope plays 

an important role, hence, Carath ́odory’s 
theorem has the same importance where it gives 

an analytical definition of convex envelope, see 

[15]. The Hausdorff stability results for 

quadratic CCT for bounded uniformly 

continuous positive function with respect to 

closed sample sets has been presented in [12], 

and also Hausdorff stability was established 

when the functions is  bounded with respect to 

the Hausdorff distance between graphs of the 

sampled functions [1]. Other studies on this 

topic may be found in References, see [9, 10, 

14]. From the above mentioned references, it is 

noted that, there is a few published studies on 

this subject, particularly, for the case of Hölder 

functions. In the present work, the Hausdorff 

stability for   -upper compensated convex 

transformations is studied to fill the large gap 

between bounded Hölder functions and its 

envelopes. Moreover, the radius of locality of 

the quadratic compensated convex 

transformation is obtained for Hölder function. 

2. Preliminaries  

We will introduce some basic definitions, 

notations and well-known results that we are 

going to use during this paper and for further 

details, see [4, 6, 7, 8, 15]. Through this paper  

   denotes the convex function parameter 

   denotes the vector                 . 

Definition 2.1. Consider the function 

           satisfies for positive constants 

    and   may be called a convex function 

parameter. 

              , for all       ,  (2.1)    

 then the  -lower CCT for       is defined 

as. (2.2) 

Also, we can rewrite condition (1.1) in 

another form such as      at   is concave 

down. Similarly, if the function   satisfies 

             , for all       ,   2.3)  

then the  - upper CCT for       is defined as. 

    
                [       ]        (2.4) 

For the mixed CCT, we can deduce from 

Definition 1.1 that  
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when   satisfies                  , for all 

       and the  -mixed CCT is given by 

      
              

 (    
       )  

      
              

 (    
       )  

    (2.5)   

where    .  

As a particular case, when     in 

Definition 1.1, we can define the so-called 

quadratic CCT and we write   
    

   for upper 

and lower CCT, respectively. 

 

Algorithm 2.1. The technique of compute the 

 -lower CCT of      satisfies condition (2.1) 

can be written as in the following algorithm. (A 

similar technique for the  -upper CCT can be 

presented). 

Step1. Add to      a weight function 

     and let it    . 

Step2. Find the first derivative of    .  

Step3. Solve the equation          to find 

the critical points. 

Step4. Find from the previous step, the 

global minimum of      let’s say        

 

Step5. 

    
        {

                          

                   
 

 

As a particular case: 

If      is lower semi continuous function 

1. Find the equation of tangent line of right 

side. 

2. Find the intersection point of the equation of 

the curve in right side and the equation of the 

tangent line. 

3. Find the equation of straight line between 

intersection point in right side that we get and 

intersection point of left side with coordinates. 

Definition 2.2. Affine function is a single 

valued mapping            such that  

                              

for all       and      . 

Definition 2.3. (Affine Hull) of the set        

is the smallest affine set containing   and 

denoted by Aff( ). 

Definition 2.4. Consider the function 

            {  }  The convex envelope of   

at         is given by 
  [ ]        

    
 {                          } for 

all       .    (2.6) 

Following Carath odory’s theorem, we 

deduce the local convex envelope of the 

function   at    for                 can also 

given by 

  [ ]        
       

 {∑     
           ∑     

      

  ∑     
                }.  (2.7) 

In fact, the weight function that we use be a 

coercive function. 

Definition 2.5. The function           is said 

to be coercive or supper linear growth function 

if  
    

   
   as        

The CCT satisfies many properties such as 

translation invariant, Rotation, continuity, 

monotonicity preserving and locality, see 

[8,15]. Let’s beg n w th the (Translation 

Invariant Property). 

 

Proposition 2.1. Consider the function  

          satisfies (2.1), then the  -lower 

CCT for       is translation-invariant against 

the weight function, that it means 

    
          [            ]              

Similarly, for the  -upper CCT, if   satisfies 

(2.3) then we have 

    
                    [            ]   , 

for all        and for every fixed   . 

In the following we give an example of 

function of one variable and we compute the 

lower CCT. 

 

Example 2.1. Consider                  

     For      , we have      has two singular 

point at         Since      satisfies the 

condition (2.1), then by using Algorithm 1.1 the 

lower CCT is given as follows 

  
       

 

{
 
 
 
 

 
 
 
   

 

 
             

   

   
   

   

   
 

  
 

 
             

  

   
   

  

   
 

             
  

   
 

          
  

   
 

 

Fig 1, displays the graph of the lower CCT. 
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(a) 

 
(b) 

Fig 1: The lower CCT for Example 1.1 at 

        for (a)    . (b)        

We note that in Example 2.1 the lower CCT 

converges to the original function as   tends to 

positive   and when we used the translation-

invariant to solve this example we find that it 

has no effect in the values of the lower CCT.   

The following example gives a function of 

two variable and we need to solve the 

singularity of this function. 

Example 2.2. Consider                  Then 

for      , by using Algorithm 2.1 the lower 

and upper CCT are given by. 

  
          

{
 

   
 

  
                

 

  
 

   
 

  
                

 

  
 

  
          

{
 

   
 

  
                

 

  
 

   
 

  
                

 

  
 

 

Fig 2, displays the graphs of these transforms 

with      . 

 

 
(a) 

 
(b) 

 
(c) 

Fig 2: (a) The function                  (b) 

The lower CCT for Example 2.2 with        

(c) The upper CCT for Example 2.2 with 
       

We note that in Example 2.2 the lower CCT 

below the function and the upper CCT above 

the function. 

We recall definition of Hölder and Lipschitz 

continuous functions, see [3]. 

Definition  2.6. Consider the function  
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         , we say that   is Hölder 

continuous function if there exists a positive 

constant       such that 

                            ,      (2.8) 

with      . When    , we say that   is 

Lipschitz continuous if 

                           .      (2.9) 

Following [15], we recall some more 

important results related to CCT of Lipschitz 

and Hölder function. 

Theorem 2.1. Consider the function  

          be a Hölder function with 

         , then for      and        we have 

  
               

   
          

 

   (
 

  
)

 

   
(  

 

 
), 

for   is Lipschitz function with Lipschitz 

constant      , we have 

  
               

        
  

  
    (2.10) 

Now, we mention the localization version of 

the definition of the convex envelope for a 

given function, see [15]. 

Definition 1.7. Let      and          

        is called the open ball of center    

and radius  ,  ̅       is the corresponding closed 

ball. Let     ̅             is a bounded function 

then the local convex envelope of   at    is 

defined by 

   ̅      [ ]     

   
       

 {∑     
           ∑     

        ∑     
           

                    } 

(2.

11) 

We recall the locality properties of CCT for 

bounded and Lipschitz continuous functions 

presented in [11,15]. Throughout this paper, we 

call    as locality radius. 

Theorem 2.2. Let           bounded 

function such that for positive constant    we 

have          , then the locality radius of 

bounded function is given by     √
  

  
 

for    .  

Theorem 2.3. Suppose that           is 

Lipschitz continuous function with Lipschitz 

constant L > 0, then the locality radius of 

Lipschitz function is given by    
(  √ )  

 
  for 

all     and for every     .  

We will give example of Lipschitz function 

to show Theorem 2.3. 

Example 2.3. Consider               

         is Lipschitz function, since      

satisfies condition (2.3) of the upper CCT so 

according to Algorithm 2.1 for     the upper 

CCT is given by 

  
        

{
 
 

 
 

 

  
                    

 

  

                 
 

  

 

The graph of this example is shown in 

Figure 3.  

 
(a) 

 
(b) 

Fig 3: The upper CCT for Example 2.3 for 

(a)      . (b)      . 

Since                          is 

Lipschitz function with       which satisfies 

(2.9). The locality radius of Example 2.3 equal 

 
 

  
   which is less than the locality radius of 

Theorem 2.3. So according to Theorem 2.3 

when the function is Lipschitz then the value of 

the upper CCT depends on the values of the 

function   in a closed ball with radius 
 

  
 and the 

locality radius will decreasing when   

increasing and tends to infinity  

3. On the locality of CCT 

In this section, we present the locality 

property of the CCT for Hölder function. 

Firstly, we shall introduce some results that will 
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help us to construct our main results in this 

section. 

Lemma 3.1. Assume that       such that 

             with     are positive constants 

and      Then for any        with      

      , we have        

Proof. The proof key is based on the 

contradiction. Assume that       such that 

            and there exists      with 

             such that       . Since if     

   then            hence                      

which contradict the assumption                

so that       . Now we need to solve the 

inequality                . The solution of the 

inequality is equivalent to find the upper bound 

of the solution of the inequality             . 

Since                   . Take     
 

 
    

      Therefore,  
  

   
  (

 

 
)

 

 equivalent 

to  
    

 

 
  

  (
 

 
)

 

  

Take        (
 

 
)

 

, then 

   (  (
 

 
)

 

)

 

   

. Therefore, 

  (
 

 
)

 

  
 

 (  (
 
 

)
 

)

 
   

  (
 

 
)

 

      (3.1) 

Dividing both side of (3.1) by (  (
 

 
)

 

), 

gives 
 

  
 

 (  (
 

 
)

 
)

 

   

  . 

So that, we have 

    
 

 (  (
 

 
)

 
)

 
   

        (3.2) 

(3.2) holds by taking condition   

(  (
 

 
)

 

)

 

   

  . So that,   

    
 

 
   (

 

 
)

 

 
 

     such that  (  (
 

 
)

 

)

 

   

     

(3.3) 

 (3.3) equivalent to  

        
 

     such that     
 

   
 

 
    

(3.4) 

Then there exists     
 

 
   (

 

 
)

 

 
 

     such that 

      . 

To improve the previous result we will give 

the next corollary. 

Corollary 3.1. Optimization the solution 

      
 

     in the previous Lemma 

3.1. 

Proof. We will use the Newton Raphson 

method to improve       
 

   . 

Let           –         , then              

   Since 

        
     

      
               

 
       

 
  

   
   

  
 

at      ,           
 

     , we have   

   
         

 
     

       
. 

Therefore, 

   
         

 
     

       
   , such that     

 

   
 

 
    

(3.5) 

Now, we compute the locality radius of the 

CCT of the Hölder functions. 

Theorem 3.1. Suppose          is a Hölder 

function with constant             and    

   , then the locality radius of   
     and   

     is 

given by 

    
    

   (
 

 
)

 

   
. 

Proof. Consider that                    and 

without loss of generality we assume that 

       and by using (2.7) then there exist 

                for             such that 

  [ ]     

{∑     
           ∑     

        ∑     
             

       }            (3.6)   

Also, according to Definition 2.4, there 

exists an affine function 

                             
Such that  

                          (3.7) 

                               (3.8) 

 By taking convex envelope to both side in 

(3.8), we have 

  [     ]             [     ]. Following 

(3.6), we conclude that 

  [ ]    ∑     
           ∑     

               

 ∑     
             ∑     

      
 

    ∑     
          ∑     
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Moreover, from the definition of      we 

have          , thus 

             [ ]     

To get an estimate on       assume that 

    
  

  
 in (3.7), we obtain  

   (
  

  
)      (

  

  
)   |

  

  
|
 

  

which is equivalent to 

     

  
  (

  

  
)                (3.9) 

Also, we can rewrite (3.9) as follows,  

     

  
  (

  

  
)                       (3.10) 

Following Theorem 3.1 at      , we have 

       
         

 

   (
 

  
)

 

   
(  

 

 
) 

and since    is Hölder function, then we 

deduce from (3.10) that 

(
    

 
)

 

        (
    

 
)

 

  

 
 

   (
 

 
)

 

   
   

      

   (  
 

 
)  

Take 

  (
    

 
)

 

            

    
 

   (
 

 
)

 

      
      

   (  
 

 
) and   

 

 
  Then, 

we have           such that              

and      . 

By applying ondition (3.3) of Lemma 3.1 

     
 

   
  

  

           
 

     

(
       

 
 

   (
 

 
)

 

      
      

   (  
 

 
)

)   

   
     

   
   

    

   

   
    

Since           )  so that the condition 

holds. Therefore, there exists an upper bound of 
  

       
 

              
 

   . 

Since          
 

  hence 

                
 

             (3.11) 

Now, we seek to estimate the radius of locality 

that is        from (3.8), we have 

     
                  

                              
       

            

Therefore, 

     
        

                       (3.12) Take    

     
 , then         

 

   so that (2.12) equivalent to 

  
 

             
 

   

 
   

   
 

 
 

    

 
  

   

   

Take    
   

 , then    
 

    

 
   

     
 

 
  

    

 
   

Let   
   

   
    

    

 
  and    

 

 
  then, we have 

    
    

 
       such that      ,       and   

 . By applying condition (3.3) of Lemma 3.1 

     
 

   
  

  

     
  

   

  

 
          

        
   

Therefore,   has an upper bound,    

      
 

               and         
 

    . So 

               
    

 
   

If we using the result of      from (3.11), we 

have 

      
    

   (
 

 
)

 

   
          (3.13) 

Corollary 3.2. Optimization the radius of 

locality of the previous Theorem 3.1 

Proof. Condition (3.5) in Corollary 3.1 

satisfies. Therefore, we have 

  
          

 
      

        
. So 

  (
   

   
)  

 

    
 

    
      

     

 
  

   
 

 
   

     
 

 

       . 

Therefore, 

     

 ((
   

   
)  

 

    
 

    
      

     
  

   
 

 
   

     
 

 

       )

 

 

   

(3.14) 

Also if we using the result of      from (3.14). 

Then, we have 

            
    

 
 

 
 

 
((

   

   
)  

 

    
 

    
      

     
  

   
 

 
   

     
 

 

       )

 

 

   

(3.15)  

for                    This completes the proof. 
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We will give an example of Hölder function to 

show the previous Theorem 3.1. 

Example 3.1. Consider        √         . 

Since      satisfies condition (2.3) of the upper 

CCT, so according to Algorithm 2.1 for       

the upper CCT is given by 

  
        

{
 
 

 
  

 
(

 

  
)

 

 

                    (
 

  
)

 

 

√              (
 

  
)

 

 

 

The graph of this example is shown in Figure 4. 

 
(a) 

 
(b) 

Fig 4: (a) The upper CCT for Example 3.1 for 

(a)     , (b)       .  

Since        √          is Hölder function 

which satisfies (2.8) with           
 

 
 . We 

note that the locality property for Hölder 

function holds and the value of the upper CCT 

depend only on the values of the function   in a 

closed ball with radius (
 

  
)

 

  and the radius of 

locality of Example 3.1 less or equal to (
 

  
)

 

  

and this equivalent to the radius of locality in 

the previous Theorem 3.1 in (3.13) so the 

radius of locality in (3.13) is better than the 

other radius in (3.15). 

4. Hausdorff Stability of the  -CCT. 

In this section, we will study the Hausdorff 

stability for the n-upper CCT, similarly (lower) 

by showing that the  -upper CCT is Hausdorff-

Lipschitz continuous with respect to closed 

sample sets at Hölder function . The Hausdorff 

stability results for bounded uniformly 

continuous positive function with respect to 

closed sample sets has been presented in [12]. 

Hausdorff stability is established in [1], when 

the functions be a bounded with respect to the 

Hausdorff distance between graphs of the 

sampled functions. 

We give the next result of the  -th root of 

Hölder function, that help us later to prove 

Hausdorff stability with respect to closed 

sample sets. 

Lemma 4.1. The  -th root of Hölder 

function is Hölder as well. 

Proof. Without loss of generality, we 

suppose that          . Since  -th root 

function is increasing function, hence we have 

   √         √       such that     . So that 

              ( √     
 

)
 

        

  ( √        )
 

        (By using Binomial 

Theorem) 

 (( √      )
 

         )           . 

Hence, we have 

  √     
 

 √     
 

 √           
 

  

since   is Hölder function so satisfies the 

fact in (2.8). Therefore, we have 

√       √        
 

       
 

      (4.1)   This 

complete the proof. 

We shall introduce some definitions and 

results that will help us to construct our main 

result in this section, see [12]. 

Definition 4.1. For the function 

           is positive bounded such that 

              for all        and   is a 

closed subset of   , we define the distance-

like function   as follow:- 

                 
   

 {      √
    

 

 

}      

               √      {               } 

 

By using [2] we give the definition of 

Hausdorff distance between two sets. 

Definition 4.2. Consider that     two non 

empty closed and bounded subsets of   . The 
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Hausdorff distance between E and   is defined 

as follow: 

               {         and     }. 

This definition equivalent to 

                 {   
   

           
   

        } .  

We will give a Hausdorff continuity of 

distance-like function  .  

Corollary 4.1. Suppose that           is 

Hölder and positive bounded function. For any 

two non-empty closed subsets     of    such 

that                . Then 

|                           |   

√  (
 

 
)

 

 
√ d st  

        d st  

  

       

for all     . 

Proof. Since the function   is Hölder, hence 

there exist      such that 

                     √
     

 

 
, by using 

Definition 3.2 of distance Hausdorff between 

two sets for        there exist        such 

that            . So that 

                           

        √
     

 

 

        √
     

 

 

               ( √
     

 

 

 √
     

 

 

)

         
 

√  
| √     

 
 √     

 
|

 

By using Lemma 4.1, we have 

                             

        √
 

 

 
       

 

  .          (4.3)     

By using Cauchy-Schwarz inequality in the 

right side, so (4.3) equivalent to  

                            

√  (
 

 
)

 

 √    
  

  for all                 

Therefore  

                            

√  (
 

 
)

 

 √                      
  

   

Similarly, we can conclude that 

                            

√  (
 

 
)

 

 √ d st  
        d st 

 

  

        

This completes the proof. 

We will give a Hausdorff continuity 

of         
      . 

Corollary 4.2. Suppose that          is 

a Hölder and positive bounded function. For 

any two non-empty closed subsets     of   . 

Then, we have 

|        
               

      |   

  √ 
 

    √  √  (
 

 
)

 

 
√ d st  

        d st  

  

       

Proof. Since 

|        
               

      |   

|                           |   

∑     
   (        

                   
      ) .        (4.4)      

Following (4.2) of Definition 4.1, if 

distance-like function                   then 

                 and if                   then 

                     √
 (  )

 

 
    for       . 

Therefore, 

               √  (       √
     

 

 

)

 √  ( √
     

 

 

       )

 √   √
     

 

 

 √     
 

 

Since the function   is bounded then, we 

have               √ 
 

  and   is positive 

constant. Therefore, we conclude that 

∑  

   

   

(        
                   

      )

 ∑  

   

   

 √ 
 

        √ 
 

  

 ∑  

   

   

 √ 
 

       √ 
 

         

 

 (4.5) 

|                            |   

  √      (               )+ 
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√      (               )  . 

By using the relation 

           
            

 
 , we have 

|                           | 

 
√  

 
               |             | 

 (              |             |)  

 
√  

 
                               

( |             |  |             |)  

 
√  

 
 |                           | 

 | (|             |  |             |)|  

 √  |                            |  

By using Corollary 4.1, we have 

|                           | 

 √  √  (
 

 
)

 

 
√ d st  

        d st  

  

        

 (4.6)  

By compensation from (4.5) and (4.6) in 

(4.4). This completes the proof. 

We need to compute the  -upper CCT of the 

function     
 which help us later in this section. 

Lemma 4.2. Let γ is positive constant, 

       and E is closed set then for    , we 

have 

    
 (    

)    

{
  
 

  
          

   

     
√

      

 

 
                              

                                                        √
 

      

 
 

                                                            √
 

      

 
 

  

(4.7)  

Proof. By applying Algorithm 2.1 in case 

the  -upper CCT. We need to calculate the 

convex envelope of the function  

      
                  Let 

      (    
)             

 {
                        

                     
 

The equation of the tangent line of the curve 

                      at the point       is 

equal to                   We will find the 

intersection point between the two curves 

                and              so 

                          , hence    

    √
 

      

  so the intersection point equal 

to ( √
 

      

 
 

 

     
). Now, we will find the 

equation of straight line between the two 

point       , ( √
 

      

 
 

 

     
)  so that,  

  
  

     
√

      

 

 
          Therefore, we 

conclude that     
 (    

)     is given by (4.7). 

This complete the proof. 

 We will give the relation between the  -

upper CCT of        and         
         ). 

Corollary 4.3. Suppose that           is 

Hölder and positive bounded function and for 

any a non-empty closed subset   of    then 

for all       ,     we have 

    
              

 (        
      )    .  (4.8)    

Proof. We want to prove in the first this 

inequality 

    
              

 (        
      )        

for all              (4.9) 

If   not belong to the set  , so          

     (        
      )     and if   belong to the set 

 , so 

                 
   

 (      √
    

 

 

)  

Since   is the nearest element to itself in a 

set  . So 

                √
    

 

 

   

So that 

                √                √  √
    

 

 

 

 √    
 

  

So 

(        
      )          . Therefore, we have  

            (        
      )             (4.10)   

By applying the ordering property to (4.10), 

we have  

    
                

 (        
      )     for all 

       (4.11)  
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We want to prove the inverse of the 

inequality in (4.9). We have two cases: 

The first case: If distance-like 

function                , then  

(        
      )        Therefore, in this case 

we need to prove that: 

    
 (        

      )           
         .   (4.12) 

By using Definition 2.1, we need to prove 

that the convex envelope of the function  

(                 
      ) equal to zero for 

all   in   .  

Let the affine function         for all   in 

  and prove that 

       [                
      ] at        

(4.13) 

        [                
      ]  or all    n    

(4.14) 

Since at    , we have 

(                 
      )           

         

so (4.13) holds. 

Now, we prove (4.14) which equivalent to 

prove that 

        
                for all   in   .       

(4.15) 

 If distance-like function                   , 

then         
           hence (4.15) holds, and if 

distance-like function                  , 

then                √               . So 

        
       [ √      

   
 (      √

    

 

 

)]

 

  

So (4.15) equivalent to 

(    
   

 (      √
    

 

 
))

 

            (4.16) 

Take  -th root to both side of (4.16), which 

give 

    
   

 (      √
    

 

 

)         

This equivalent to 

         
   

 (      √
    

 

 

)     

Since                           Therefore, 

we need to prove that 

   
   

 (            √
    

 

 
)         (4.17)   

The left side of (4.17) equal to 

   
   

 (            √
    

 

 

)

    
   

 (      √
    

 

 

)

                 

 

Therefore, (4.14) holds, so that 

  [                
      ]      

     
 (        

      )       

So that 

        
           

 (        
      )       

    
 (    )   .  (4.18) 

The second case: If the distance-like 

function                   

                 
   

  (      √
    

 

 

) 

        √
 (  )

 

 
         (4.19)      

Since    is the minimum element in the set 

  then, we have 

        
       [ √  (       √

     

 

 

)]

 

  

Let the function              for       by 

using Lemma 4.7. 

    
          

 

{
 
 
 
 

 
 
 
 

         
       

     
√

      

     

 

            

                                                       √
     

      

 

 

                                                   √
     

      

 

 

 

(4.20) 

From (4.19), we have        √
     

      

 
 . 

So that 

    
            

         
       

     
√

      

     

 

            

         
        

So that, we have 
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           or      

So that, we have         
       

    
          for all        and by using the 

ordering property, we have 

    
 (        

      )         
 (    

      )         
          

(4.21)    

The inverse of (4.21) also proved in (4.18) 

for all      . This completes the proof. 

Now, we give result of Hausdorff stability of 

the  -upper CCT with respect to closed sample 

sets at a Hölder function . 

Theorem 4.1. Suppose that           is 

Hölder and positive bounded function. For any 

two non-empty closed subsets     of    . 

Then, we have 

|    
              

         |   

  √ 
 

    √  √  (
 

 
)

 

 √ d st  
        d st  

  
       

Proof. By using Corollary 3.3 we need to 

prove 

 |    
 (        

      )        
 (        

      )   |   

  √ 
 

    √  √  (
 

 
)

 

 
√ d st  

        d st  

  

        

 By Corollary 4.2 we have, 

|        
                

      |   

  √ 
 

    √  √  (
 

 
)

 

 
√ d st  

        d st  

  

       

Therefore, 

        
         √ 

 
    √  √  (

 

 
)

 

 
√ d st  

        d st  

  

       

        
       

        
         √ 

 
    √  √  (

 

 
)

 

 
√ d st  

        d st  

  

       

 

    
         ⟩

            √ 
 

    √  √  (
 

 
)

 

 

 

√     
        d st  

  

        

     
 (        

      )   

    
         ⟩

            √ 
 

    √  √  (
 

 
)

 

 

 

√     
            

  

         

By using the ordering and the affine 

covariance properties of the  -upper 

CCT, we have 

    
         ⟩

         

   √ 
 

    √  √  (
 

 
)

 

 
√     

        d st  

  

        

     
 (        

      )   

    
         ⟩

         

   √ 
 

    √  √  (
 

 
)

 

 
√     

            

  

        

This complete the proof. 

5. Conclusion. 

The problem of filling the large gap between 

bounded Hölder function and its envelope is 

studied, and the radius of locality of the Hölder 

function is obtained and it decreases with 

increasing the convex function parameter  . It 

is found that the value of the lower CCT 

depends on the obtained radius of locality and 

the values of the function in a certain closed 

ball. Moreover, the Hausdorff stability for the 

 -upper compensated convex transformations 

is studied, by considering that the  -upper 

compensated convex transformation is 

Hausdorff-Lipschitz continuous with respect to 

a closed sample sets for the Hölder function .  
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