APMIXLITG MATETX ARITHMETIC

IO FITD GEAR RATIOS

S. A. GHARRAF
Ass. Professor, Prod.Eng.Dept.Alex.Univeraity

ARSTRACE

With a properly formulated matrix equation, we can quickly locate the region in which acceptable gear train ratios lie and they can be readily procramed for either calculator or computer operations.

ITHRODUCTICA

Finding siutable change gears for a specified ratio is actually two problems in one:-

- Find rational number N / D close enough to the apecified ratio 1.
- Pactor II and D into acceptable gear tooth numbers. The first part of this problem has received a great deal of attention, while the second part still must be solved by the cut-andtry method, or by refernce to factor tables.

Matrix arithmetic offers a aystematic way to determine all fractions within specified limits of a given ratio. It convergs rapidly to the region in which 1 lies,it is not subjected to comulam tive error, and it is easily arranged for desk calculator or computer work.

METHOD ANATYSIS

I'he method is based upon conjugate fraction theory which atates that two fractions a / b and c / d are conjugate if ($a b-b o)= \pm 1$.

This means that between two conjucate fractions there exists no other fraction wh smaller numerator or denominators. In this sense each conjugato fraction is "a best approximation" of the other. If the numbers a and b aro chosen so that a / b is a fractIon in lowest terms creater than the desired ratio 1 , and if 0 and d are aimilarly chosen so that c / d is a fraction in lowest terms leas than the desired ratio 1 , the basic matrix can be formed:

$$
B=\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|
$$

In matrix theory B is unimodular if ($a d-b c)=1$. A multiplier matrix is now needed and can be formed from the unit matix:

$$
X=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

By adding adjacent row elements and interposing their sum:

$$
\begin{aligned}
& \text { First stage }=\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right| \\
& \text { Second atage }=\left|\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 1
\end{array}\right| \\
& \text { Third stage }=\left|\begin{array}{lllllllll}
1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 1 & 3 & 2 & 3 & 1
\end{array}\right|
\end{aligned}
$$

this is a new concept in matrix axitmotie which was specially eveloped to solve gear ratios. Note thats-

- The unit matrix can be oxpanded indefinitely,
- when regarded as a fraction each column is in lowest terms,
- The fractions follow a descending order,
- Each adjacent $2 x 2$ sub-matrix io unimodular,
- No Praction with smaller terms exists with value between adjacent fractions.

These unique propertica of the multiplior matrix can be usad to find tho apecificd ratio 1 which lies botween the two ratios in the basic ratirix by multiplying the two matriceo:

$$
B X=G
$$

To show how tinis rorks in a practical way, suppose $1=1 / \sqrt{\pi}$ $=0.564189$ is to be approximated within ± 0.00002 from gear ratio tables seloct:-

$$
\begin{aligned}
& a / b=35 / 62=0.564516 \\
& c / d=22 / 39=0.564102
\end{aligned}
$$

Since $35 \times 39-22 \times 62=1$, the basic matrix is unimodular, and it can be multiplled by the X matrix to give:-

Unit matrix $=\left|\begin{array}{ll}35 & 22 \\ 62 & 39\end{array}\right| \times\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=\left|\begin{array}{ll}35 & 22 \\ 62 & 39\end{array}\right|$
First stage $=\left|\begin{array}{ll}35 & 22 \\ 62 & 39\end{array}\right| \times\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=\left|\begin{array}{rrr}35 & 57 & 22 \\ 62 & 101 & 39\end{array}\right|$
Second atagen $\left|\begin{array}{ll}35 & 22 \\ 62 & 39\end{array}\right| \times\left|\begin{array}{lllll}1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1\end{array}\right|$

$$
=\left|\begin{array}{rrrrr}
35 & 92 & 57 & 79 & 22 \\
62 & 163 & 101 & 140 & 39
\end{array}\right|
$$

Thire etgee $\left|\begin{array}{ll}35 & 22 \\ 62 & 39\end{array}\right| \times\left|\begin{array}{lllllllll}1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 & 3 & 2 & 3 & 1\end{array}\right|$ $\left|\begin{array}{llllllllll}35 & 127 & 92 & 149 & 157 & 136 & 79 & 101 & 22 \\ 62 & 225 & 163 & 264 & 101 & 241 & 140 & 179 & 39\end{array}\right|$

The desired ratio lies between 101/179 and 22/39 oo further effort needs to be concentrated only in this area of the G matrix.

This can be donc by expanding the lower portion of the X matrix to give:-

$$
X=\left|\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
3 & 7 & 4 & 5 & 1
\end{array}\right|
$$

Multiplping this with a portion of the B matrix gives:-

$$
B X=G
$$

$$
\left|\begin{array}{ll}
101 & 22 \\
179 & 39
\end{array}\right| \times\left|\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
3 & 7 & 4 & 5 & 1
\end{array}\right|=\left|\begin{array}{lllll}
101 & 224 & 123 & 145 & 22 \\
179 & 397 & 218 & 257 & 39
\end{array}\right|
$$

It appears now that $145 / 257=0.564202$ is acceptably close to the apecified 1 . Unfortunately, 257 is a prime mumber and it can ${ }^{i} t$ be factored into auitable sets of change gears.To proceed from here the lower portion of the X matrix

$$
\left|\begin{array}{lll}
1 & 1 & 0 \\
4 & 5 & 1
\end{array}\right|
$$

Can be expanded further and the regulting X matrix can then be multiplied:
$\left|\begin{array}{ll}123 & 22 \\ 218 & 39\end{array}\right| \times\left|\begin{array}{lllll}1 & 2 & 1 & 1 & 0 \\ 4 & 9 & 5 & 6 & 1\end{array}\right|=\left|\begin{array}{lllll}123 & 268 & 145 & 167 & 22 \\ 218 & 275 & 257 & 296 & 39\end{array}\right|$
This might yield a favorable ratio.

A secona altemstive 1 to beleot one or two new B matrices from the above G matrix and multiply them by an expanded unit matrix to give:-

In theae multiplication the unit matijx may expanded to any length nocessary to produoe a muitable ratio.

COHCLUSICIS

4is rational numbers can be formed by adding adjacent numerators and denominators starting with $1 / 0$ and $0 / I$. This is the easiest way to find the desirable ratio when the tolerance is wide, but for close tolerance ration the labor of repeated long division is excesaive and the ohance of error increases accordingly.

With a properly formulated matrix equation you can quickly locate the region in which acceptable ratios lie, and they can be readily programed for either calculator or computer operation. Computationally, it is less subject to error, and, by solving a matrix equation, you identify the tolerance region in one atep without involving recurrence process and continual testing of fractions. Mathematically, the properties of rational numbers is actually just a part of the larger theory of matrices.

RPFERETCES

I. Merritt, H.E. " Calculation of Change Gear Combination" Journal Mechanioal Engineering Science,Vol 12 No 11970.

NOMEITCLATURE

