Engineering Math. & Phys. Dept. Faculty of Engineering Mansoura University

Numerical Analysis Math. PGS – Year 1 11-9-2013

Instructions:

- Books or any notes are NOT allowed
- You must justify your answers for full credit
- * Exam contain FOUR questions, and do ALL problems
- Time limit THREE hours

Question 1

- 1) The cubic equation $x^3 1.70x^2 11.44x + 23.66 = 0$ has a double root. Find this root correct to five decimal places by using the Newton-Raphson method.
- 2) Suppose the simple iteration method is used to find the point of intersection of the two curves $y_1 = x^3$ and $y_2 = e^x$. Suggest an iteration form $x = \varphi(x)$ that will converge to the rquired point. (Don't iterate to find approximations of the point)
- 3) Assuming that the equation f(x) = 0 has a root in the interval (-3,4) and it is required to find this root within an absolute error of 10^{-8} using the bisection method. Determine the minimum number of iterations required to guarantee that accuracy.
- 4) Consider the root-finding problem $g(x) = x^2 5 = 0$. Let $x_0 = 2.00$, $x_1 = 2.10$, use the Secant method to find x_2 .

Question 2

1) Determine the constants *a*, *b*, and *c* that make the function

$$S(x) = \begin{cases} S_0(x) = a + b x + 1.5 x^2 - 0.5x^3, & 1 \le x \le 2\\ S_1(x) = -2.5 + 11.5x - 0.5x^2 + c x^3, & 2 \le x \le 3 \end{cases}$$

a cubic spline. Is it a natural cubic spline? Why or why not?

Prove that if g(x) interpolates the function f(x) at x₀, x₁,..., x_{n-1} and if h(x) interpolates f(x) at x₁, x₂, ..., x_n, then the function

$$q(x) = g(x) + \frac{x_0 - x}{x_n - x_0} [g(x) - h(x)]$$

interpolates f(x) at x_0, x_1, \dots, x_n .

Question 3

1

1) Given the linear agebraic system $A_{2\times 2} X_{2\times 1} = B_{2\times 1}$, where the coefficient matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix}$, and the two column vectors $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$. This system can be solved iteratively using the iteration process

$$X^{(k+1)} = T X^{(k)} + C, \quad k = 0, 1, 2, ...,$$

where T is the iteration matrix. For this problem, use the marix norm subordinate to the infinity norm whenever you need to compute a norm. Then answer "**True** "**or** "**False** ", with explanation, to the following statements:

- a) A is not a strictly diagonally dominant matrix.
- **b)** AX = B is an *ill-conditioned* system.
- c) The Jacobi and Gauss-Seidel iteration matrices , T_J and T_{GS} respectively, have equal norms.
- d) The Gauss-Seidel method converges twice as fast as Jacobi method.
- 2) Use the Cholesky factorization method to determine the lower triangular matrix L such that $A = L L^T$, where

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 1 & 6 \end{bmatrix}$$

2/3

3) Consider the following linear system

[-1	6	2]	[x]		[6]	
4	2	0	y	=	16	
2	2	5]	$\lfloor_Z \rfloor$		L20J	

Determine the first two itrates using Jacobi method, and only the first iterate for Gauss-Seidel and the SOR (with a relaxation parameter $\omega = 1.25$) methods. Use the zero vector as an initial approximation for the solution.

Question 4

1) Use Taylor's method of order 2 to the initial IVP

$$y' - y = 1 - x^2$$
, $y(0) = 0.5$,

to find *y* at x = 0.2 and 0.4. Then use Adams-Bashforth three-step method to find *y*(0.6), use a step size h = 0.2.

Note: Adams-Bashforth three-step explicit formula is

$$y_{n+1} = y_n + \frac{h}{12} [23 y'_n - 16 y'_{n-1} + 5 y'_{n-2}], \qquad n = 2,3, ...$$

2) Consider the second order IVP

$$\frac{d^2y}{dx^2} + y = 0, \qquad y(0) = 1, \qquad y'(0) = 0$$

- a) Rewrite the problem as a system of first order equations, with initial conditions
- b) Then use RK4 method with step size h = 1, to approximate the the solution y(1). Compute the absolute relative error at x = 1.

End of Exam, Good luck