Mansoura University. Faculty of Engineering. Electrical Engineering Dept.

First Semester. Date: 30 -12-2012.

Time: Three Hrs for Two Parts.

Full Mark: (55)

Exam of (Electrical Machines II)

For 3rd Grad Electrical Engineering Dept. students.

Answer All Questions.

الامتحان من جزاين: من فضلك أجب كل جزء من الامتحان في اتجاه مختلف من ورقة الإجابة

First Question: (5 + 8 + 12 marks)

- 1-1) What do you mean by voltage regulation of an alternator? Describe the methods for determining the voltage regulation of an alternator?
- 1-2) Draw the vector diagram of synchronous machine (generator and motor) at different operating power factors (Unity, Lag.& Lead) and find a general formula of no-load E.M.F described the synchronous machine at full-load.
- 1-3) An 11 kV, 1000 kVA, 50 Hz, star-connected, three-phase alternator has a resistance of 2 Ω /phase. The open circuit and full-load zero power factor lagging characteristics are given below. Find the voltage regulation of the alternator at full-load current, 0.8 lagging power factor by:

40

1- Synchronous impedance method;

Field current [A]

2- A.T method; and

110

3- Potier method.

180

Page 1 of 2

140

(Compare between the results)

50

	O.C phase voltage [V	/]	3350	0	4040	1	7220	7940)	8660	
Z.P.F-full load phase voltage [V]		, 0		870	7.	4900	6060)	7040		
	9000							0.0.0		رفا ور	يرحى إ
	8000				 				-	Clasil	لعد ماه
	7000		- 	5			;	L		ارفا ور المسخفيات وا دورقه رات	الإما
	6000			//	11					J 170.	
Phase Voltage [V]	5000						·!		-		
nase Vo	4000			- +				T			
P	3000			-/			 		-		
	2060			/- T	1				-		
	1000		7	- 		 	!		-		
	0			+	+		+ + -				
	0 20	40	60	80	100	120	140	160	180		

Field Current [A]

Second Question: $(5 + 5 + 5)$	- J +	13	marks)
--------------------------------	-------	----	--------

- **2-1) <u>Draw</u>** the distribution of power inside three-phase induction machine at the following operating cases:
 - i) Full-load as motor and generator,
 - ii) Stand-still and synchronous speed,

Then, prove that: at full-load: $P_g : P_{cu2} : P_m = 1 : S : 1-S$.

- 2-2) **Explain** the methods adopted for starting the following motors:
 - i) 3-phase induction motors with squirrel cage and slip-ring wound rotor types; and
 - ii) Single phase induction motor with explaining why it has not starting torque?
- 2-3) State the condition under which a three-phase induction machine will have:
 - i) Rotor frequency equal to stator frequency,
 - ii) Rotor frequency higher than the stator frequency,
 - iii) Maximum voltage and current induced in the rotor, and
 - iv) Minimum voltage and current induced in the rotor.
- **2-4)** A three-phase, 4-pole, 4.5 kW, 400 V, 50 Hz, delta connected induction motor gave the following test results:

	Applied voltage [V]	Line current [A]	Input power [W]
No-load test:	400	4.2	480
Blocked rotor test:	215	15	1910

Stator and rotor ohmic losses at stand-still are assumed equal.

Draw the circle diagram with scale 1 Cm/1 A, and then find the following:

- i) Line current, power factor, slip, air-gap power, torque, copper-losses and efficiency at full-load.
- ii) Line current, power factor, air-gap power, torque, and copper-losses at starting.
- <u>iii)</u>Maximum power output and maximum power input and their corresponding line current and slip.
- iv) Maximum torque ant its corresponding line current and slip.
- **v)** The power output, operating power factor and efficiency if the machine is made to work as an induction generator with output current equal to motor full-load current.

Good Luck.

Prof. Dr. Mohamed El-Shamoty.

Page 2 of 2