أجب على جميع الأسئلة - الامتحان في صفحتين - لا يشترط الإجابة حسب ترتيب الأسئلة

1] The aircraft A with radar detection equipment is flying horizontally at an altitude of 12 km and is increasing its speed at the rate of $1.2 \mathrm{~m} / \mathrm{sec}$ each second. Its radar locks onto an aircraft B flying in the same direction and in the same vertical plane at an altitude of 18 km . If A has a speed of $1000 \mathrm{~km} / \mathrm{h}$ at the instant when $\theta=30^{\circ}$, determine the values of \ddot{r} and $\ddot{\theta}$ at this same instant if B has a constant speed of $1500 \mathrm{~km} / \mathrm{h}$.

Prob.(1)

Prob.(2)

2] The ball is kicked with an initial speed $v_{A}=8 \mathrm{~m} / \mathrm{sec}$ at an angle $\theta_{A}=40^{\circ}$ with the horizontal. Find the equation of the path $y=f(x)$, and then determine the ball's velocity and the normal and tangential components of its acceleration when $t=$ 0.25 sec .

3] The small object of mass m is placed on the rotating conical surface at the radius shown. If the coefficient of static friction between the object and the rotating surface is 0.8 , calculate the maximum angular velocity ω of the cone about the vertical axis for which the object will not slip. Assume very gradual angularvelocity changes.

$\xrightarrow{\text { باقي الأسئلة في الصفعـة التالية }}$

4] The $1.2-\mathrm{kg}$ slider is released from rest in position A and slides without friction along the vertical-plane guide shown. Determine (a) the speed v_{B} of the slider as it passes position B and (b) the maximum deflection δ of the spring.

Prob.(4)

Prob.(5)

5] The two identical steel balls moving with initial velocities v_{A} and v_{B} collide as shown. If the coefficient of restitution is $e=0.7$, determine the velocity of each ball just after impact and the percentage loss n of system kinetic energy.
6] Crank $O B$ of the linkage oscillates about O through a limited arc, causing crank $A C$ to oscillate about C. When the linkage passes the position shown with $O B$ normal to the x-axis and $C A$ normal to the y-axis, the angular velocity of $O B$ is 2 $\mathrm{rad} / \mathrm{sec}$ clockwise and constant. For this instant calculate the angular accelerations of $C A$ and $A B$.

مع أطيب الأمنيات بالنجاح والتوفيق،

