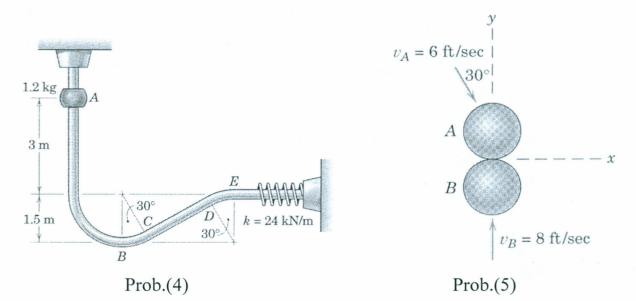

التاريخ: ٢٠١٤/٥/٢١		جامعة المنصورة
المادة: ميكانيكا تطبيقية	(الفرقة الأولى قسم هندسة الغزل والنسيج)	كلية الهندسة
الزمن: ٣ ساعات		قسم الرياضيات والفيزياء الهندسية

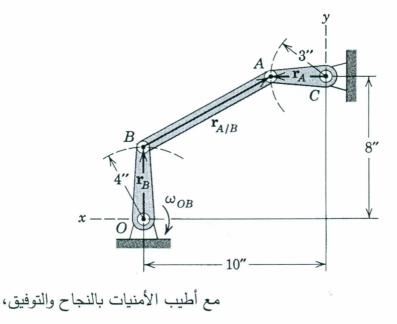
أجب على جميع الأسئلة - الامتحان في صفحتين - لا يشترط الإجابة حسب ترتيب الأسئلة

1] The aircraft A with radar detection equipment is flying horizontally at an altitude of 12 km and is increasing its speed at the rate of 1.2 m/sec each second. Its radar locks onto an aircraft B flying in the same direction and in the same vertical plane at an altitude of 18 km. If A has a speed of 1000 km/h at the instant when $\theta = 30^{\circ}$, determine the values of \ddot{r} and $\ddot{\theta}$ at this same instant if B has a constant speed of 1500 km/h.

Prob.(1)



- 2] The ball is kicked with an initial speed $v_A = 8$ m/sec at an angle $\theta_A = 40^\circ$ with the horizontal. Find the equation of the path y = f(x), and then determine the ball's velocity and the normal and tangential components of its acceleration when t = 0.25 sec.
- 3] The small object of mass *m* is placed on the rotating conical surface at the radius shown. If the coefficient of static friction between the object and the rotating surface is 0.8, calculate the maximum angular velocity ω of the cone about the vertical axis for which the object will not slip. Assume very gradual angular-velocity changes.



باقي الأسئلة في الصفحة التالية

4] The 1.2-kg slider is released from rest in position A and slides without friction along the vertical-plane guide shown. Determine (a) the speed v_B of the slider as it passes position B and (b) the maximum deflection δ of the spring.

- 5] The two identical steel balls moving with initial velocities v_A and v_B collide as shown. If the coefficient of restitution is e = 0.7, determine the velocity of each ball just after impact and the percentage loss *n* of system kinetic energy.
- 6] Crank *OB* of the linkage oscillates about *O* through a limited arc, causing crank *AC* to oscillate about *C*. When the linkage passes the position shown with *OB* normal to the *x*-axis and *CA* normal to the *y*-axis, the angular velocity of *OB* is 2 rad/sec clockwise and constant. For this instant calculate the angular accelerations of *CA* and *AB*.

