Eng. Research Bull.
Faculty of Eng. \& Tech., pp: 87-102. Menoufia University.
Vol. VIII Part II, 1986.
Analysis of statically indeterminate
slabs and beams applying the method of concentrated deformation
by
SHERIF H.SOLIMAN B.SC, Ph.D., M.ASCE
Assistant prof, Helwan University, Cairo.

```
Synopsis
---------
The finite element and more recently the boundary element method, are widely applied. Many computer programs for solving several problems are available. The concentrated deformation method can have the same field of application with the advantage of large reduction of computer work due to the reduction of the number of elements, yielding the same accuracy. There is no need in many cases to add other type of elements to determine the reactions as for examle the reactions for continuons slab and beam. Simple solution is obtained in case of existance of a real joint, especially if the joint has a stiffness different from the monolithic body (as composite beams), being much complicated in other methods.
```


Notation

```
a = Length of element in the x direction.
```

a = Length of element in the x direction.
b = Width of element in the y direction.
b = Width of element in the y direction.
E = Modulus of elasticity of element in the }
E = Modulus of elasticity of element in the }
x direction
x direction
E = Modulus of elasticity of element in the Y
E = Modulus of elasticity of element in the Y
direction.
direction.
I = Moment of inertia of element in the }x\mathrm{ direction.
I = Moment of inertia of element in the }x\mathrm{ direction.
I}=\mathrm{ Moment of inertia of element in the y direction.
I}=\mathrm{ Moment of inertia of element in the y direction.
G = Shear modulus.
G = Shear modulus.
t = Thickness of element
t = Thickness of element
P = Potential energy or work done
P = Potential energy or work done
Q = Shearing force.

```
Q = Shearing force.
```

```
q = Uniform load on the roof.
M = Bending mement.
S # Stiffness.
T = Torsional moment.
\alpha = Angle of rotation in bending.
\phi = Angle of rotation in torsion.
\omega = Stiffness in bending
\Psi}=\mathrm{ Stiffness in torsion.
\xi = Stiffness in shear.
\eta=Stiffriess in compression or tension.
```


introduction:

In case of the method of concentrated deformation the structure is divided into slements as in other methods. To.get the same accuracy of the other methods the number of elements is lesser. In case of pre-cast structures the pre-cast unit can be considerd as one element for easier approach and the joints are considered as the boundary of the element. The elements are considered absolutely stiff. All the deformations are concentrated at the boundary (joints between the elements). As a first approach the stresses at the boundary were considered uniform and equal(1). In such approach to get your accuracy, the elements must be small enough using a large number of elements. But by considering the stresses distributed nonuniformly a good accuracy can be achieved with a smaller number of elements. The approach to the solution is based on the equilibrium of elements which is considerably simple and easier, compared with other methods. It is very interesting to state that when the element boundary are real joints with stiffness other than that of the elements, no change in the approach to the solution will occur, as will be discussed later. Application of this method has-proven to be successful for statically determinate composite beams (2).

As a simple approach the method will be explained on an example of beamless slab of 2 panels, as shown in fig. 1a.

The roof must be divided into suitable rectangular elements, of dimensions axb. In our example,it is divided into elements of $0.5 \times 0.5 \mathrm{~m}$. The system will be considered as stiff plates connected by elastic joints which can resist bending momen:s, torsion and shear. The joints between the elements can be conditional joints (due to division). or can be real joints in case of precast structures. The elements can be of diffrent material (physical parameters) or geometry (dimensions) Because the elfments are considered as absolutely stiff. all the deformations (due to bending, torsion and shear) are considered to be concentrated at the element edges and at the joints. The connection between the elements is considered to consist of three diffrent connections: i) bending conection ii) torsion connection iii) shear connection fig. 16.

Each of the above connections is considered as a complex connection which consists of the part which takes the effect of own deformation of the connected elements itself and the effect of deformation of the real joint if exists. So the stiffness of the joint due to bending or torsion or shear is considered to consist generally of three parts of stiffness which can generally be determined as follows:

$$
\frac{1}{S}=\frac{1}{S_{i}}+\frac{1}{S_{j}}+\frac{1}{S_{r}} \ldots \ldots \ldots \quad I
$$

Where : S is the joint stiffness
$S_{i} \& S_{j}$ the elements stiffness
5^{i} is the real joint stiffness which must be determined ${ }^{\text {r from experiments. In ce }}$. there is no real joints, S_{r} is taken equal to infi:

The three values of S (in bending, torsion and shear can be determined as follows :

As stated before the slab is divided into elements of dimensions $a x b$ in the x and y directions, respectively, and of thickness t.

Case of bending:

When the edge b is acted upen by bending mement $=M_{x}$
Potential energ, for element of volume $a, b . t$:

Knowing that :

$$
\begin{aligned}
& P=\frac{1}{2} S_{v} \sigma_{x} \cdot \varepsilon_{x}{ }_{x}^{I_{x}} d_{v} \\
&=\frac{a b}{2 E_{x}} \frac{M_{x}^{2}}{I_{x}^{2}} \int_{-t / 2}^{t / 2} z^{2} d z \\
&=\frac{a b M_{x}^{2}}{2 E_{x}^{I_{x}^{2}}} \cdot \frac{t^{3}}{12} \\
&=\frac{a M_{x}^{2}}{2 E_{x} I_{x}} \ldots \ldots \ldots(1) \\
&
\end{aligned}
$$

and knowing that $M=\omega_{x} . . \alpha_{\text {K }}$. angle of rotation.

The work down by the moment:

$$
\begin{align*}
p & =2 \cdot \frac{1}{2} \cdot M_{x} \cdot \alpha_{y} \\
& =M_{x}^{2} / \omega_{x} \tag{2}
\end{align*}
$$

From (1) and (2) :
$\omega_{x}=2 E_{x} I_{x} / a \quad$ where $I_{x}=b t^{3} / 12$
Similarly: $\quad \omega_{y}=2 E_{y} I_{y} / b, I_{y}=a t^{3} / 12$
And in case of isotropic body $=E_{x}=E_{y}=E$.

Case of Shear:

When the edge b of the element is acted upon by a shearing load Q :
Knowing that $\underset{z x}{\gamma}=\tau_{z x} / G$, and

$$
\begin{aligned}
& \tau_{z x}=\frac{Q . S}{I_{x} \cdot b}=\frac{Q b\left(\frac{t}{2}-Z\right)\left[Z+\left(\frac{t}{2}-Z\right) / 2\right]}{I_{y} \cdot b}, I_{x}=b t^{3 / 12} \\
& =\frac{Q\left(\frac{t}{2}-Z\right)\left(\frac{t}{2}+z\right) / 2}{\text { Potential energy: }}=\frac{Q}{2 \cdot I_{x}}\left(\frac{t^{2}}{4}-Z^{2}\right) \\
& \cdot p=\frac{1}{2} \cdot \int_{v} \tau_{z x^{\prime}} \cdot \gamma_{z x} \cdot d_{v} \\
& \text {-90- }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{2} \cdot \frac{Q^{2}}{4 \cdot I_{x}^{2}} \cdot \frac{1}{G} \cdot a \cdot b \int_{-t / 2}^{t / 2}\left(\frac{t^{2}}{4}-z^{2}\right)^{2} d z \\
& =\frac{Q^{2}}{B \cdot I_{x}^{2} \cdot G} \cdot a b \int_{-t / 2}^{t / 2}\left[\frac{t^{4}}{16}-\frac{t^{2} \cdot Z^{2}}{2}+z^{4}\right] d z \\
& =\frac{Q^{2}}{B \cdot I_{x}^{2} \cdot G} a b\left[\frac{t^{5}}{16}-\frac{t^{2}}{2} \cdot \frac{t^{3}}{3} \cdot \frac{1}{4}+\frac{t^{5}}{5} \cdot \frac{1}{16}\right] \\
& =\frac{Q^{2} a b}{8 I_{x}^{2} G} \cdot \frac{t^{5}}{30}=\frac{3 Q^{2} a}{5 G t b} \cdots \cdot \cdot(1)
\end{aligned}
$$

And knowing that $Q=\xi_{x}^{\xi} . \Delta$.
Where $\xi=$ Stiffness in shear
Work done by shear \mathbf{Q}

From (1) and (2)

$$
S_{x}=\frac{5}{3} \frac{\text { G. tb }}{a}
$$

$$
\text { Similarly } \quad \xi_{y=} \frac{5}{3} \cdot \text { G.t. } \frac{a}{b}
$$

Case of torsion:

The element is acted upon by torsional moment of
equal intensity at all the edges
For the shown case of deformation potential energy of the element :
$P=\frac{1}{2} S_{v} \tau_{y x} \cdot \gamma_{y x} d v$
Where: $\gamma_{y x}=\tau_{y x} / G$.
Work done by torsion :

$$
\begin{aligned}
P & =\frac{1}{2}\left(2 \cdot T_{y x} \cdot b \cdot \Phi_{x}+2 T_{x y} \cdot a \cdot \Phi_{y}\right) \\
& =T_{x y}\left(b \cdot \Phi_{x}+a \cdot \Phi_{y}\right) \quad \ldots \ldots(2)
\end{aligned}
$$

Following the same analysis as before, the stiffness due to torsion can be expressed as follows:

$$
\begin{gathered}
\psi_{x}=\frac{G t^{3}}{3} \cdot \frac{b}{a} \& \psi_{y}=\frac{G t^{3}}{3} \quad \frac{a}{b} \\
\text { After determining the stiffness of the elements and } \\
\text { if a real joint exists, its stiffness must be given from } \\
-91-
\end{gathered}
$$

the standards or experiments, the general stiffness of the joint will be determined from equation(l) for bending, torsion and shear.

As stated before the first step in the solution is to divide the roof into a suitable number of elements. As en example the flat siab of two panels $3 \times 3 \mathrm{~m}$ and thickness 10 ch is devided to elements of $0,5 \times 0.5 \mathrm{~m}$ in the x and y directions as shown in figure 1 a. The elements can carfy any type of loading, but for simplicity in our example, the roof is assumed to carry a uniform load $=-600 \mathrm{~kg} / \mathrm{m}^{2}$.

The next step is simply to study the equilibrium of the elements in the vertical direction and around the too axes x and y. simply $\Sigma Q=0, \quad \Sigma M x=0, \quad \Sigma M y=0$. The positive direction of Q, Mx, My can be chosen at any dirsctan, we will assume the possitive directions as shown zn figure $1 a$.

To reduce the amount of work in the solution, the alements thich have the same forces are given the same bype and their equilibrium is shown in figure 2. The Aratic rigures used in figure la give the element number. The roman numbers give the type number. So, we have 72 elenents and thirteen types.

The next step after determining the complex stiffness of the joint, and the equilibrium of the elements, is to apply the stiffness method. The vector of displscement of the system U (two angles of rotation around the x and y axis α_{k} and α_{y} and vertical displacement z for each element; is determined by solving the following matrix equations of the stiffness method:
$[A] \cdot[S] \cdot\left[A^{\top}\right] \bar{u}=\bar{p} \ldots .$. II
Shere
[A] is the matrix of the equations of equilibrium
M Tis the transposed matrix of [A].
(s) stiffness metrix
$\overrightarrow{\mathrm{F}}$ aector of the external forces.
The matrix [S] is a diagonal matrix.
The matrix [A] [S] [A] is the matrix of internal stiffness of the whole system. Solving equation 11 we get the displacement for every siement $\left(\alpha_{x}, \alpha_{y}\right.$ and $\left.z\right)$

Applying what was stated before for the example, since matrix [S] is a diagonal matrix then the matrix [S] written as one raw matrix and the matrix [A] will. have the view shown in table 1 .

To determine the stiffness values in the example, the material is considered jsotropic with the following characteristics: $E=2,0.10^{6} \mathrm{t} / \mathrm{m}^{2}, \mu_{=}=0,25, G=E / 2(1+\mu)=0,4 E$ and the roof is assumed to carry a load of $0,600 \mathrm{t} / \mathrm{m}^{2}$ $(0,150 \mathrm{t}$ /element since the element is $0,5 \times 0,5 \mathrm{~m})$

For simplicity all the elements are of the same material, having the same dimensions and thickness. No real joint exists, then the stiffnesses of all elements are equal, and are equal in both directions (a=b). Then:

$$
\begin{aligned}
S & =\frac{1}{\frac{1}{S}+\frac{1}{S}}=\frac{S i}{2}=\frac{S j}{2} \\
\omega^{m} & =\omega^{n} \frac{S_{j}}{\equiv}=\frac{\omega_{\text {element }}}{2}=\frac{2 E I}{2 a}=\frac{50 \cdot 10^{3}}{12 \cdot 50} E=\frac{250}{3} E \\
\psi^{m} & =\psi^{n}=\frac{\text { element }^{2}}{2}=\frac{1}{3} G t^{3} \cdot \frac{a}{b} / 2=\frac{1}{6} \cdot 0,4 E \cdot 10^{3}=\frac{200}{3} E \\
\xi^{m} & =\xi^{n}=\frac{\xi_{\text {element }}}{2}=\frac{5}{3} G t \quad \frac{a}{b} / 2=\frac{5}{6} \cdot 0,4 E \cdot 10=\frac{10 E}{3}
\end{aligned}
$$

To determine the reaction at the supports a reasonahle value of the stiffness of the supports is assumed equal to $50 \mathrm{\xi}$ at the external corners. For the reaction at mid span in order to keep the symmetry of the global stiffness matrix [A] [S] [A] it is assumed to have two equal reactions at the same point for the left and right elements having the same stiffness of the external corner reactions:

$$
\eta_{1}=\eta_{2}=50 \xi
$$

To reduce the volume of work, since the matrix of internal stiffness [A][S][A] is a symmetrical matrix, it is enough to have the values onlv above the diagonal (in the band width)

The band width $=3 x$ Max. difference in jointed element number +2 .

For our example: band width is $3,0.6,0+2=20$. Since according to the stiffness method for our case the strains in the joint will be affected only by the displacement of the elements directly adjacent to it (this is clear from table 1), and since the complex stiffness matrix of the joint is a diagonal matrix, the raws of the internal stiffness matrix can be determined mathematically for every element taking into consideration the effect of the elements jointed to it as shown in table 2 .

```
The solution of the matrix equations was done by the
computer.
    As stated before the solution of the matrix
equation gives the displacements. ( }\mp@subsup{\alpha}{x}{},\mp@subsup{\alpha}{(}{}\mathrm{ and }z)\mathrm{ at the
center of each element. To get the vertical displac-
ement (in the }Z\mathrm{ direction ) for any other point in
the element except at the center the two angles of
rotation }\mp@subsup{\alpha}{x}{}\mathrm{ and }\mp@subsup{\alpha}{y}{}\mathrm{ must be taken into consideration .
The bending moment at any joint between two elements
i and j :
M =\omega(\mp@subsup{\alpha}{i}{}-\mp@subsup{\alpha}{j}{})
Where \(\alpha\) is considered in the direction of the bending moment.
```

```
    The tarsional moment at any joint between two
```

 The tarsional moment at any joint between two
 elements i and j :
elements i and j :
T=\psi(\mp@subsup{\alpha}{i}{}-\mp@subsup{\alpha}{j}{})
T=\psi(\mp@subsup{\alpha}{i}{}-\mp@subsup{\alpha}{j}{})
Where\alphais considered in the direction of the joint
Where\alphais considered in the direction of the joint
(perpendicular to the direction i,j).
(perpendicular to the direction i,j).
The shearing force at any joint is equal to the
The shearing force at any joint is equal to the
diffrence between the perpendicular to the surface
diffrence between the perpendicular to the surface
displacements at the middle of the contacted edges
displacements at the middle of the contacted edges
multipled by the shear stiffness. For example, at a
multipled by the shear stiffness. For example, at a
horizontal joint between elements i and j :
horizontal joint between elements i and j :
\mp@subsup{Q}{ij}{}=\mp@subsup{\xi}{}{n}[(\mp@subsup{Z}{i}{}+\mp@subsup{\alpha}{ix}{}\cdot\frac{b}{2})-(\mp@subsup{Z}{j}{}-\mp@subsup{\alpha}{jx}{}\cdot\frac{b}{2})]
\mp@subsup{Q}{ij}{}=\mp@subsup{\xi}{}{n}[(\mp@subsup{Z}{i}{}+\mp@subsup{\alpha}{ix}{}\cdot\frac{b}{2})-(\mp@subsup{Z}{j}{}-\mp@subsup{\alpha}{jx}{}\cdot\frac{b}{2})]
The reaction at any support is equal to the disp-
The reaction at any support is equal to the disp-
lacement at its point in its direction multiplied by
lacement at its point in its direction multiplied by
the support stiffness.

```
the support stiffness.
```

 Analysis of results:
 Check of reactions:

Due to symmetry the reactions are $4 R 1$ at the four
outer corners, and $4 R 2$ at the two middle supports (as
stated before to keep the symmetry the reactions at
the middle supports was assumed equal to $2 R 2$).
For the four outer corner elements:
$z=0,193260638 \cdot \frac{10 E}{3}, \quad \alpha_{x}=0,438810508.10^{-2} \cdot \frac{10 \mathrm{E}}{3}$,
$\alpha_{y}=0,334106459 \cdot 10^{-} \cdot \frac{10 E}{3}$
For the four elements at the middle supports
$z=0,186566741 \frac{.10 \mathrm{E}}{3} \quad \alpha_{x}=0,569560415 \cdot 10^{-2} \cdot \frac{10 \mathrm{E}}{3}$
$\alpha_{y}=0,176508133.10^{-2} \cdot \frac{10 \mathrm{E}}{3}$

```
\SigmaR=4R1+4R2=4(\eta\mp@subsup{\eta}{1}{}\mp@subsup{z}{1}{}+\mp@subsup{\eta}{2}{}\mp@subsup{z}{2}{})=4\eta(z,
    \SigmaR=\frac{4}{1000}\cdot50\cdot\frac{10}{3}\cdot2,0.1\mp@subsup{0}{}{5}[[0,193260638-(0,438810508+
    0,334106459).10-2}.25]+[0,186566741-(0,176508133
    0,569560415)10-..25]]
\therefore\SigmaR=10,8 T, Where 25= 京=\frac{b}{2}
    Total load on roof = 0,6.3,0.3,0.2,0 = 10, 8T = \SigmaR 0.k
    Check of bending moments:
Generally, to determine the bending moment at the joints the angles of rotation of the two elements in a direction perpendicular to the joint are considerd.
\(M=\left(\boldsymbol{\alpha}_{i}-\boldsymbol{\alpha}_{j}\right) \omega\) for our example
\(=\left(\alpha_{i}-\alpha_{j}\right) \cdot \frac{250}{3} \cdot 2,0.10^{5} \cdot 2,0.10^{5}=\left(\alpha_{i}-\alpha_{j}\right) \frac{1000}{3} \mathrm{mt} / \mathrm{m}\).
Where : 2,0 to change 501 m striup (width of the element \(0,5 \mathrm{~m}\) ) and \(10^{-5}\) to change to mt .
The total+ve bending moment in the \(y\) direction at the center line of the slab sec \(I-I\) can be calculated as follows:
Due to the symmetr.y \(\quad \alpha_{i}-\alpha_{j}=2 \alpha_{i}\)
\(\Sigma M=\left[1000 / 3 \Sigma 2 \alpha_{i}\right] 0.5 \quad\) ( 0.5 due to width of element \(=0,5 \mathrm{~m}\) )
(for onespah)
\(=[2,0.1000[1,06+0,8832+0,8190+0,9102+1,1091+1,2924]\)
\(\left.10^{-3}\right]^{3} \cdot 0,5\)
\(M=[0.707+0.589+0.546+0.607+0.759+0.862] 0,5=2,025\)
\(M(\) for one \(\operatorname{span})=0,6.3,3^{2} / 8=2,025 m t=\Sigma M\) o.k
Check of Bending moments distribution:
The given example was also solved using the finite element method to compare the results.
In figure 3 the number given at the top left corner of the element is the element number used in. the method of concentrated deformation and the number
given in the bottom right corner is the number of element used in the method of finite elements.

Moments along section II - II fig. 3 .
\(M=\left(\alpha_{i}-\alpha_{j}\right) 10^{\frac{3}{3}} / 3 \mathrm{mt} / \mathrm{m}\)
\(M_{1,7}=(0,334106-0,205328) \cdot 10^{-2} \cdot 10^{3} / 3=0,429\)
\(M_{7,13}=(0,205328-0,039897) \cdot 10^{-^{2}} \cdot 10^{3} / 3=0,5514\)
\(M_{13} \cdot 19=(0,039897+0,116739) \cdot 10^{-^{2}} \cdot 10^{3} / 3=0,522\)
\(M_{19}, 25=(-0,116739+0,21727) \cdot 10^{-2} \cdot 10^{3} / 3=0,335\)
\(M_{25,31}=(-0,21727+0,176508) \cdot 10^{-^{3}} \cdot 10^{3} / 3=-0,136\)
\(M_{31},{ }_{37}=(-0,176508-0,176508) \cdot 10^{-^{2}} \cdot 10^{3} / 3=-1,177\)

The distribution of bending moments along section II-II are given in figure 3 .

Similarly the moments distribution along axes III is also given.

Along axes \(I-I\) the moments by the concentrated deformation method were given when the check of the bending moments was done. The finite element methed give the values at the middle of the element (at sec. \(I^{\prime} I^{\prime}\) ), the values were increased by a coefficont 1,0285 to get the values of the moments at section I-I.

Figure. 3 shown that the distribution of moments give good coincidence with other methods.

\section*{Conclusions:}
1) For statically indeterminate slabs and beams the method of concentrated deformation give much easier approach for the solution compared with any other method, specially in case of existance of real joint which have stiffness diffecent from that of the monolitic body.
2) The results obtained using the method of concentrated deformation are in good agreement with the results obtained by other known methods. Therefore, use of this method is advantageous due to its simplicity and lesser work.

\section*{Refrences:}

1- Rjanitsin A.R Analysis of solid plates loaded in their own plane by the method of elastic concentrated deformation. journal of mechanics and structure analysis 1980 No. 5

2- Sherif M.H., Dadonou M.I. Analysis of composite beams by method of concentrated deformations. Express-Information Bulletin, All-Union scienteficResearch Institute of information on construction and Architecture, August 1986.

[B]

[ FIGURE 1 ]















 \(\sum n_{y}=0,1 / 2 \cdot \theta_{(42,48)^{-K}(42,48)^{+\infty} / 2} \cdot 8_{(36,42)^{+M}(36,42)^{+T}(41,42)}\)

stre 11




\(\sum Q=0, \quad Q_{(67,68)^{-2}}^{161,67^{\circ}} \quad\) \& \(\quad x_{1} \rightarrow\)


\(-\infty / 2 \cdot z_{2}=0\)

[ FIGURE 2]
-99-


```

