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ABSTRACT 

The main purpose of this paper is to introduce a comprehensive study of vector optimization 
problems (VOP). A new combined approach is developed for characterizing the efficient solutions 
of (VOP). This approach combines the characteristics of both Tchebycheff norm approach and 
K-th objective Lagrangian approach to form an improved scalarizing method for treating 
nonlinear multiobjective optimization problems. The Combined procedure is sensible because the 
Tchebycheff norm approach possesses complementary distinguishing characteristics for K-th 
objective Lagrangian approach. The theorems which characterize the efficient solutions of (VOP) 
in terms of this new combined approach are introduced. Also, some of the basic notions in 
parametric convex programming are redefined and analyzed for the new combined approach. 

Keywords Vector optimization, combined approaches, Tchebycheff approach, Lagrangan 
approach, Convex programming. 

1. INTRODUCTION 

A variety of scalarization methods for finding 
efficient solutions of multiple objective programs 
(MOPS) have been developed over the last two 
decades. Some of the methods were designed 
specifically for linear problems and others work well 
only on problems with concave objective functions 
and a convex feasible region [I]. 
Scalarization meaning that the multiobjective 
problem is converted into a single or a family of 
single objective optimization problems [2]. 
Three requirements are set to any scalarizing 
function: 

1. it can cover any Pareto optimal solution, 
2. every solution is Pareto optimal, 
3, its solution is satisfactory if the aspiration 

levels used are feasible (if the scalarization 
function is based on aspiration levels). 

Unfortunately, no scalarizing function can satisfy all 
three requirements 121. 

One of a few methods that can generate efficient 
solutions of general MOPS is the Tchebycheff 
scalarization that selects an ef£icient solution based 
on the minimization of the Tchebycheff distance of 
the objective functions from an ideal point [3]. 
Among the first who proposed to apply the 
Tchebycheff norm to MOPS in the early seventies 
were W, Zeleny, and Bowman [4]. In the eighties, 
that direction of research was explored by 
Wierzbicki, Ecker and Shoemaker, Choo and Atkins 
[ 5 ] ,  and many others. In parallel, the theorey of 
generalized Lagrangian duality in single objective 
mathematical programming has been developed as a 
means for resolving a duality gap that may exist for 
nonconcave problems. Specific generalized 
Lagrangian functions were introduced by Roode. 
[Gould] proposed a multiplier function and 
Nakayama et aI. contiued in that direction by adding 
to the reqirements of the multiplier function [I]. 
As the generalized Lagrangian duality theory plays a 
major role in the analysis and solution of general 
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constrained single objective nonlinear programs, it 
also turned out to be helpful in generating efficient 
solutions of nonconcave multiobjective problem. 
TenHuisen and Wiecek proposed a framework for 
developing generalized Lagrangian-type scalarizing 
functions for nonconcave multiobjective problem [I]. 

Although numerous interactive procedures have been 
suggested, none has emerged as a clearly preferred 
approach, given that managers have decidedly 
different decision making styles and these styles 
result in different approaches to problem solving. 
Recently, researchers introduced the concept of the 
undied algorithm which links various approaches in a 
way that makes use of the advantages of the linked 
approaches and avoided their disadvantages [6]. 
Wendell [7] combined the weighting problem and the 
constraint problem to introduce another form of 
scalar optimization methods, which is called the 
hybrid approach. Ragab [8] used both of the 
weighting problem and constraint problem. 
Hegazy [3] combined the characteristics of both the 
generalized Tchebycheff norm method and the 
constraint method lo introduce a modified hybrid 
approach. Hussein [9] combined the weighted norm 
problem and the constraint problem. Hamada [lo] 
combined the characteristics of both the Lagrangian 
problem and the constraint problem. Awad [l l]  
combined the generalized Tchebycheff norm and the 
proper equality constraint. Steuer, and Silverman, 
and Whisman. [12] introduced a unified approach 
called a combined Tchebcheff / aspiration criterion 
vector interactive multiohjective programming 
procedure. Kassem [13] proposed two unified 
approaches. The first approach is a general unif~ed 
parametric approach. The second approach is a 
general unified nonlinear goal programming 
approach. Gardiner and Steuer 1141 suggested unified 
procedures linking various approaches and allowing 
users to switch between methodologies. Tarrad [15] 
developed an approach that solves generalized goal 
programming problems using visual interactive 
method. Kanaya [16] proposed a unified interactive 
approach for treating nonlinear multiobjective 
optimization problems in h z y  environment. 
Abu elnaga 1171, developed an interactive combined 
approach between the I-SHOT and NIMBUS 
techniques. Khdour [6], developed a unified 
approach (ARPRDA) between the Attainable 
Reference Point method and the Reference Direction 
method 
With respect to the multiple objective program: 
(VOP) : 

M i W x )  = tTi (x). . .fi (4 . .  .fk (-4 (1) 
s.t. x E S  

We will combine the characteristics of both 
Tchebycheff norm approach and K-th objective 
Lagrangian approach to form an improved 

scalarizing approach for treating nonlinear 
multiobjective optimization problems, and introduce 
a parametric study. 

2. COMPONENT APPROACHES 

2.1 Different metrics [2] 
The ideal objective vector is used as a reference point 
and Lp -mews are used for measuring the distances. 
In this case the Lp -problem to be solved is: 

subject to x E s 

If P = a, , the metric is Lso or Tchebycheff and the 
L a  or Tchebycheff problem is solved: 

minimize 
i=l ,...., k 

subject to x E s 
The above problem is nondifferentiable. Instead, we 
have the problem of a E R and x e Rn variables: 

minimize cc. 

subject to a a fi (x) - z; , 

for a l l  i =l,.,..,k 
(4) 

X E S  

2.2 Theoretical results 121. 
Some theoretical results concerning this method can 
be summarized as: 
Theorem 2-1: The solution of Lp -problem is Pareto 
optimal. 
Theorem 2-2: The solution of Tchebycheff problem 
is weakly Pareto optimal. 
Theorem 2-3: Tchebycheff problem has at least one 
Pareto solution. 
Hegazy [3] Showed that the generalized Tchebycheff 
norm problem takes this form: 

where P E R? , R? is the positive orthant of 

R~ , U* is an ideal target, 

where f - min f j (x) ' - X E S  

and 6 is a small positive number 
and fl is normalized by the condition PI= 1, then the 
problem has the following forms: 

or equivalent 
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subject to : 

2.3 Characterizing efficient solutions for MOP in 
terms of the optimal solutions of P(fl [3]. 
Theorem: x* is an efficient solution of MOP if it is 
optimal solution to P(p) for some P = fi*. 
Definition: the efficient set is unifonnaly dominant if 
for every nonefficient point Z , there exists an 
efficient one x* such that f i  (9 4 f i  (x*) for alli  
Theorem: If the e£Ecient set is uniformaly dominant, 
then all solutions to P(p) are efficient solutions of 
MOP. 
2.4 The Kth-objective Lagrangian Method 
Hegazy [3] has characterized the efficient solutions 
of MOP in terms of the optimal solutions of the 
following form: 

r -I 

ek (u ) )  min fk (x)  + C u j f j  (x)  
XES I j*k J 

(~1,~2,..~-,~k-l,~k+l,....,~m) where; u E U = 
l u j 2 0  foreach j # k  

is the set of Lagrangianmultiplier 
(8) 

2.5 Characterizing efficient solutions for MOP in 
terms of the optimal solutions of PL(u) 131. 
Definition: 
Let (y) =inf tf, ( x )  l G(x) I y) 

then problem MOP is said to be 
stable if vi (0) are finite, 
and there exist scalars Lj such that 

(9) 
Haimes [18j discusses the necessary conditions for 
efficiency which are expressed in terms of solutions 
of Pk(u) in the following theorems: 
Theorem [IS] : 

Assuming convexity assumption, if x* EX* . 

and for any given K ,  
1)  & ( E )  is stable. 
2) all f j  , j = 1,2 ,.., m and gr ,r = 1,2 ,..., k 

are faithfully convex with S. 

3) the constraints of & (E*) 

satisfy karlin's constraint qualificafon; or 

4 )  the constraints of % (E*) satis@ 

regularity assumptiom of x* . 

Then there exist u E Uk such that x* solves Pk (u)  
Theorem [3]: 
X* is an efficient solution of MOP if for some k there 
exists u E Uk such that x* solves Pk(u) and if either; 
1, uj>Oforallj#k, or 
2. x* is the unique minimizer of Pk(u). 
The limitation on Pk(u) approach is that not all 
efficient solutions of MOP are optimal solutions of 
Pk(u) for some u > 0, and vice versa. Moreover, 
imposed conditions that allow this to be true are 
somewhat complicated [3 1. 
3. COMBINED APPROACH 

In this section the formulation of a new combined 
approach will be discussed with a parametric study. 
This approach is deduced by combining the 
generalized Tchebycheff norm approach together 
with the k-th objective Lagrangian approach. 
Problem formulation 

r I 

subject to 

-Z+pi[fi (x)+6-fi]h0 , i=1,2,..,m 
, (i = j + k all objective functions) 

(u15u2~....,uk-l,uk+l,....7~~) 
where; u E U r 

/ u j > O  for each j + k  

is the set of Lagrangianmultiplier 
(10) 

note that there exists a parameter in the objective 
function and an other in the constraints. 

Definition: The problem P($,U) is stable. 

thenproblemMOPis said to be stable 
if \Vi (0) are finite, 

and thereexist ~CalarSLi such that 

(1 1) 
3.1 Characterizing efficient solutions for VOP in 
terms of the optimal solutions of P(b,U) 
The following Theorems establish the relation 
between the efficient solutions of MOP and the 
optimal solution of P(&U) problem. 
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Theorem [3]: x* is an efficient solution of MOP ifY 
x* is an optimal solution of P(f3,U) for any given f3 > 
0 and for some u e R("-') for which P(P,U) is 
feasible. 
Proof: See Hegazy [3]. 
Theorem [3]: Assume that one of the following 
holds: 
I) P($,u) is stable , the set of the constrains is 
convex , and fi (x) , i = 1,2,. . . . . . . . . . . .m are convex 

m 
functions on R or 
TI). All fi(x), i = 1,2 ,............ In and gk(x) , 

m 
k = 1,2,. . .r are faithfully convex on R , then x* 
of VOP = 4 if 4 (u*) = - 00 . Where x* is the set 
of all efficient solution of VOP. 

Proof: See Hegazy [3]. 
3.2 Characterization of the set of feasible 
parameters 
Definition [3]: The set of feasible parameters for 
problemP(P,u) denoted by Q, is defined by: 

= Pim / N@) i () , the set Q is nonempty. 
LEMMA: 

If N ( ~ ' ) ~ N @ J ) + (  for  all^,^ a n d $ i + O ,  
i = l,2,.., m 

Then the set Q is convex. 
Proof: See Hegazy [3]. 
Definition [19]: The solvability set of problem 
(VOP), which is denoted by (G), is defined by: 

( P ) E R ~  ,(u) E R ~ - ~  
/ problem (VOP) has efficient solutions 

(12) 
3.3 Characterization of the stability set of the first 
kind. 
Definition [19]: Suppose that the problem P(P, u) is 

solvable for (F,Q with a corresponding optimal 
point (Z, F) , then the stability set of the first kind of 

P(P,u) corresponding to (z, Y )  , which is denoted 

by 
S@), is defined by 

(PIE Rm ,(u) E Rm-' 
/ (X) is an eficientsolutionsof (VOP) , 
p*o ,u>-0  

(13) 
From the assumption that problem P(Q,u) is stable, 
then there exist 

solves the following kuhn -Tucker conditions : 

- +- 
a x ~  ax, j& ax, 

,a = 12, ..., n + l  
where: n (number of decision variables) 

, (i = j + k all objective finctions) 
g s ( f )  -.: 0, s E L c ( 1,2,..,r ) 

gs(X)=0, s e L  

4kki ( a + s - ~ i ] - ~ ] = o , i = i , 2 , . . , m  

$ 2 0  , $20 , & * o  
Differentiate w.r.to z : 

1-4 = O  , i = l , 2  ,..., m 

Differentiate w.r.to XI : 
?fjW a f k ( 3  

+ 2 cj afi (3 + + AiPi 2 - 
8x1 j  8x1 i=l 8x1 

Differentiate w.r.to xz : 

Differentiate w.r.to x. 

Let the above linear independent system of equations 
(14-23) be written in the following matrix form: 

r l  1 

15 J 
where Ti =Zip 
where A is (s x 1) matrix, B is (s x (m-l))matrix, C is 
(S x m) matrix, D is (s x r) matrix, 

i i .  J E ~ ~ - ' , i i ~  2 o,? r O,P E R~ ,p + 0, 

V E R ~ , V ~ O , S S ~ ,  

and r is the cardinality of the set of active constraints. 
There are more than one linear program so that an 
equivalence can be found between the set of 
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parameters corresponding to a certain optimal 
solution of any of them and the set SO 

gs(x3 4 0, s E L c ( 1,2,..,r 

4. NUMERICAL EXAMPLES 
4.1 Example 

Consider the following biobjective nonlinear 
problem: 

2 2 (XI-3) + ( ~ 2 - 2 )  S 4  
- 2 q  +x2 s o  

the Single Objective Problem of original (VOP) 
using our combined approach can take the following 
form: 
min(z+q +u2x2) 
s.t 

&(q -1)-ZSO , where hideal = I  

&(x2 -0)-zSO ,where fzideal = O  

2 2 (q-3) +(x2-2) 5 4  
-2qi-x2 so 
Letu2=.25 ,a=1 , ,@=.8  
and use UATLAB program 

solve this SOP problem 
Then xl = 1.522,~2 = 0.652, Z =  0.522 

To get another solution 
Letu2=.5 , & = I  , & = . 8  
use MA 2ZAB program 

xl= 1.522, ~2 = 0.6525 , z = 0.522 
To get another solution 
b r a 2  = 2  ,p I  =1 ,& =.8 
XI= 1.5858 , xz =0.5858 , z = 0.5858 
Letu2=2 , P 1 = 5  , & = 3  
~ ~ ~ 1 . 4 4 5 2 ,  x2 ~0 .742  , z = 2.226 
Letu2=lO , & = 5  , & = 3  
~ ~ ~ 1 . 9 7 1 ,  xz ~0.285 , z = 4.855 
L e t q = l O  ,/3l=l , P 2 = . 8  
x1=2.6078 , x2 =0.0388 , z = 1.6078 
Letu2=100 , & = I  , P 2 = . 8  
~ ~ ~ 2 . 9 6  , x2 =0.0004 , z = 1.96 
L e t u ~ = 1 0 0  , & = . 0 5  ,,&=lo0 
~ ~ ~ 2 . 9 7 9  , x;! = 0.0001 z = 0.0990 
all the above solutions are efficient solutions of the 
original (VOP) 
Characterization of the stability set of the.first kind. 

Applying Kuhn Tucker condition (K. 57 C.) we have 
Differentiate w.r.to z : 

1-4  -A, = o  (25) 
Differentiate w.r.to XI : 
l+iI#, +2*v1(Z,-3)-2*v2 = O  (26) 

Differentiate w.r.to x2 : 
u, +a#, +2*v1(jl;,-2)+v2 = o  (27) 

A,P,(Z,-1)-A,z=o , (28) 

4f12(z2 - 0 ) - ~ p = o  , (29) 

v,[ (zl -3)2+(5?2 -2)2 -4  ] = o  (30) 

v2[ -2g+x, ]=o  (3 1) 

(x, -3)2 +(% -2)2 -4<O (32) 
, S € L C ( ~ , ~  ) 
(F, -3y  +(z2 - z ) ~  - 4 = O  (33) 
,S  4 L 

GZSE1: Let y = 0 ,  then v2 >O, 

then the above equations become 

( j i - 3 ) 2 + ( ? 2 - 2 ) 2 - 4 4 ~  , S E L = ( I )  
- 2 q + 5 2 = 0  ,S 4 L 
u2 + A2& = -v2 , where v2 t 0, then : 

0.42 + W 2 )  4 0  
1 + Alp1 = 2 * v2 , where v2 + 0, 

then: ( l + 5 & ) > 0  
CASE2: Let v2 = 0 ,  t h e n v l r o ,  then: 

2 2 (21-3) +(Z2 -2) - 4 5 0  , S e L  
-2z1 +St2 -to ,SEL" (2 ) 
u~+h2P2=-2*(iT2-2) w h e r e v l ~ 0  
(Depending on the value of F2) 

l + n l p l = - 2 * ( ~ 1 - 3 )  

(Depending on the value of St 1 ) 
Substitute 

( 3 , ~ ~ ) ~  = (1.5220 ,O.6525 ), Z = S22 

Equations (25-35) we get Linear independent system 
of equations as follow: 
1-a1 -A2 = o  
1 + Al& - 2.956~1- 2 ~ 2  = 0 

u2 +R2& - 2.695q +v2 = 0 

v1[ 0 I = %  s v 1 t O  
v2[ -2.3915 ] = o  , 3 v2 =o  
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4.2 Example 
2 

fl =(x1-1)  + ( x 2 - 1 )  2 

f2  = ( X I  - 2)2 + (x2  - 312 

2 
f 3 = ( x l - 4 )  + ( ~ 2 - 2 )  2 
s.t 

xi +2x2 S10  ,x2 5 4  , x i  2 0 ,  x2 2 0  
the Single Objective Problem of original (VOP) 
using our combined approach can take the following 
form: 

2  2  min (z + (xi - 1) + ( ~ 2  - 1) + 

pl[(xl-l)'+(x2-l)'-o]-zio , 
where f,,,,, = 0 

2 P2[(X1-2) + ( q - 3 )  -0 - z L O ,  

where f2ideal = 0 
I 

q + 2 x 2  110 ,x2 1 4  , 

q 2 0 ,  X 2 2 0  

Le fu2  = 2  , u3=3  , 

& = 1  , P 2 = 2  , P 3 = 3  
and use M A  TLA B program 

to solve this SOP problem 

Then x i  = 2.8004 , x2  = 2.0391 , z=4.3214 

fi = 4.3212 , f2  = 1.564 , f3 = 1.4406 

Le tu2=4  , u 3 = 5  , 
P1=1 , P 2 = 2  , P 3 = 3  
Then xl  = 2.7792 , x2  = 2.1878 , z = 4.5765 

fi = 4.5764 , f2 = 1.2668 , f3 = 1.5256 

L e t u 2 = 4  , u 3 = 5  , 
& =6 ,P2  =7 , P3 = 8  

Then x i  = 2.4926 , x 2  = 1.9024 , z = 18.2538 

fi = 3.0422 , f 2  = 1.4474 , f3 = 2.2818 

Let u2 =.9 , u3 = 5  , 

& = 6  d 2 = 7  , P 3 = 8  
Then x1 =2.5744 , x 2  =1.6374 , z =  17.3103 

f i=2.885 , f 2 =  2.1866 , f 3 =  2.1638 
Characterization of the stability set of the first kind. 
Applying Kuhn Tucker condition (K.T.C.) we have 
Differentiate w.r.to z : 
1 - 4  -I2 -z3 =o 
Differentiate w.r.to xi : 
2(jzl--1)+~2a - 2 ) + ~ 3 ( j 1 - 4 ) + 2 2 f i ( q  -I)+ 

CASE1 : Let vl  = 0 , then v2 z- 0 ,  

then the above equations become 

q + 2 2 2 - 1 0 < 0  , s d =  {I) 

2 2 - 4 = 0  ,s E ~5 

2(g2 -1)+2E2(Z2 -3)+233(%2 -2)+ - - 
2X1D1(Z2 -1)+212P2(;32 -3)+ 
- - 

2x3 ~3 ( ~ 2  - 2)  = -v2 

CASE 2 : Let v2 = 0 , then vl z- 0 ,  

then the above equations become 

i j+222-10=0 , S E L  

2 2 - 4 4 0 ,  S E L = { ~  ) 
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Substiute for (-TI, F ~ ) '  = (2.8,2)', 8 = 4.3 in 
the above equations we get Linear independent 
system of equations as follow: 

l;i(-3.2j=0 , then Q = 0  

V2 (-2) = 0 , then F2 = 0 - - 
l.6G2 - 2.4Z-3 +3.64& + l.6A2P2 - 2.4x3P3 = -3.6 

- - 
- 2iz2 + 2&fi - 2A2p2 = -2 

5. CONCLUSION 

The aim of this research is to introduce a new 
combined approach, a study of vector optimization 
problems, its scalarization forms for determining the 
set of all efficient solutions. In the present work 
several combined forms are introduced as new single 
objective problems to characterize the efficient 
solutions of vector optimization problem. This fact 
gives an idea to deduce a unified approach which can 
handle all types of vector optimization problems. In 
addition, almost the available approaches can be 
deduced as special cases from it. The new combined 
approach, combines the characteristics of both the 
generalized Tchebycheff norm and Lagrangian 
multiplier method. Also, qualitative analysis is made 
for redefining and analyzing the basic notions in 
parametric convex programs for the new combined 
approach. 
Advantages of our approach: 
1. The Tchebycheff norm approach possesses 
complementary distinguishing characteristics for K- 
th objective Lagrangian approach, so no need to 
efficiency test because aI1 the generated solutions are 
efficient to the original problem. 
2. The parameters of this approach can be included 
in both the objective function and the constraints, this 
allows the decision maker to control the 
improvement of objective functions, from the relation 
between the included parameters. 

[I] Tind J., and Margaret M. Wiecek, " Augmented 
Lagrangian and Tchebycheff Approaches in 
Multiple Objective Programming", Department of 
Operations Research, University of Copenhang, 
May, 1998. 

[2] Miettinen, K., " Nonlinear Multiobjective 
Optimization ", Kluwer Academic Publishers, 
(1999). 

[3] Hegazy, A.E., " Multiobjective Programming and 
its Engineering Applications ", Ph.D. Thesis, 
Faculty of Engineering & Technology, El- 
Menoufia University, Shebin El-Kom, Egypt, 
(1986). 

[4] Bowman V. J., "On the relationship of the 
Tchebycheff norm and the efficient frontier of 
multiple-criteria objectives", Lecture Notes in 
Economics and Mathematical Systems, pp.76-85, 
(1976). 

[5] Choo E.-U. and Atkins D.R., "An interactive 
algorithm for multicriteria programming", 
Computers and Operations Research 7(l98O) 8 1 - 
87. 

[6] Khdour, Asmahan. A. K, "Interactive Approaches 
for Solving Multicriteria Decision Making 
Problems", PH. D. Thesis, University College for 
Women, Ain Shams University, Cairo, Egypt, 
(2005). 

[7] Wendell, R.E. and Lee, D.N., "Efficiency in 
Multiobjective Optimization Problems", 
Mathematical Programming, Vol. 12, pp.406-4 14, 
(1977). 

[8] Ragab, A. M., : Study on a Special Classes of 
Multiobjective Nonlinear Programming 
Problems", Ph. D. Thesis, Ain Shams University, 
Cairo, Egypt, (1986). 

[9] Hussein, M.L., "On Vector Optimization 
Problems with Application to Game Theory" 
Ph.D. Thesis, Faculty of Science, Tanta 
University, Tanta, Egypt, (1988). 

[lo] Hamada, M.T., "Study for Recent Approaches 
in solving Vop's " M. Sc. Thesis, Military 
Technical College, Cairo, Egypt, (1 988). 

[l 11 Awad, M.S., "On Multiobjective 
Mathematical Programming with an Air Defence 
Application" Ph.D. Thesis, Military Technical 
College, Cairo, Egypt, (1988). 

1121 Steuer, R. E., and Silverman, J., and 
Whisman, A. W., "A Combined Tchebycheff / 
Aspiration Criterion Vector Interactive 
Multiobjective Programming Procedure", 
Management Science,Vol. 3 9, P. 1255-1 260, 
(1993). 

[13] Kassem, R.M.M., "Multiobjective Nonlinear 
Programming Methods and Applications" Ph.D. 
Thesis, Faculty of Economics and Political 
Sciences, Cairo University, Cairo, Egypt, (1994). 

Engineering Research Journal, Minoufiya University, Vol. 30, No. 2, April 2007 257 



[14] Gardiner, L.R., and Steuer, R E., " Unified 
Interactive Multiple Objective Programming: An 
Open Architecture for Accommodating New 
Procedure", J. Oper. Res. Soc, Vol. 45, No. 12, P. 
1456-1466, (1994). 

[15] Tarrad, M. M. M. M., "Recent Methods in 
Solving Multicriteria Decision Making 
Problems", PH. D. Thesis, University College for 
Women, Am Shams university, Cairo, Egypt, 
(1995). 

[16] Kanaya, Z.A., "On Interactive Approaches for 
Solving Fuzzy Multicriteria Decision Making 
Problems" Ph.D. Thesis, Faculty of Science, Ain 
Shams University, Cairo, Egypt, (2000). 

[17] Abu-Elnaga, U., " Interactive Approaches for 
Solving Multicriteria Decision Making 
Problems", PH. D. Thesis, Ain Shams University, 
Cairo, Egypt, (2006). 

I181 Chankong, V. And Haimes, Y, Y., " 
Multiobjective Decision Making: Theory and 
Methodology", North-Holland, New York, 
(1983). 

[19] Osman, M.S.A. , "Characterization of the 
stability set of the first kind for nondifferentiable 
parametric nonlinear programming". Proceedings 
of the Fourth Annual Operations Research 
Conference, Zagazig, Egypt, P. 375-380, (1978). 

Engineering Research Journal, Minoufiya University, Vol. 30, No. 2, April 2007 


