
Sci. J. Fac Sci, Mnufiya Univ., VoL XIV,2000, 259-282

Semantically Extended Data Flow Diagram As A formal Specification
Tool for Methodology Information Exchange

Service (MIES Problem).

* Fatrna A. Omara
** Reharn A. Mahmoud

* Ass. Prof. In Computer Science & Eng. Dept., Faculty of Electronic Eng. Menouf, Minufiya University.
** Research Student, Mathematics Dept., Faculty of Science, Minufiya University.

ABSTRACT

In this paper a method for associating the Data Flow Diagram (DFD) with a
formal specification is described. The intention is to enhance the using ofthe DFD
as a formal specification tool, and to gain n tool that can be used to document the
application Jiinctionality in an understandable rnanrzer and, at the same time, be
capable of producing a formal speciJication that can be used to rigorously
investigate semantic properties of the application. The formal specz$cation
technique is used here based on the algebraic speczjkation technique.

1. INTRODUCTION

A framework for semantically extending an informal specification tool is
structured. Namely, the Data Flow Diagram (DFD) of Structured Analysis (SA) (See
Appendix -A) [I I. The framework facilitates the use of the DFD as an effective
documentation tool, as well as a formal specification tool. A formal view can be
used to support rigorous verification and investigation of the application properties.
A DFD models an application in terms of the following elements [2]:

a) Data-Transforms: Abstractions of an application's processing elements.

b) Data-Stores: Abstraction of repositories of data.

c) Ekternal-Entities: Abstraction of external objects interacting with the
application.

4 Data Flows: Abstractions of data communication between the above elements.

2. Sernanticaiiy Extended DFD's : An Overview

A Control-Extended DFD (C-DFD) is a DFD supplemented with notation for
describing control dependencies among its elements [2]13]. A Se:m:ltically
Extended DFD (EXT-DFD) is defined as a Control Extended DFD associated with
formal semantics. EXT-DFD has two aspects: Syntactic and Semantic; The
Syntactic aspect of an EXT-DFD is concerned with the pictorial representation,
which is C-DFD of the application. According to the work here, the semantic aspect
of an EXT-DFD is concerned with the behavioral interpretation of its C-DFD [2] .

Fatma A, Omara and Reham A. Mahmoud

The specification characterizing the semantics of a C-DFD is called its Behavioral
Specification (BS). An EXT-D:FD can be viewed as C-DFD and its BS (See
Appendix-A).

Semantic Aspects of the EXT-DFD constructs as follows (see Fig. 1):-

External Entity

Transform

Data flows
___C__+
Synchronous flow

I 1

Data Stores

Control Flows
.------- -b +------ +
Signal activator

Asynchronous flows

- =I7, -u-' ---+ ---, - - - - t w

Queued flow variable deactivator activator 1 deactivator Pair

fig. 1 Basic EXT-DFD Constructs.

The data and state transforms, asynchronous flows, external entities, and data
stores of a C-DFD are called its components.

C-DFD components are semantically interpreted as processes, and a C-DFD is
interpreted as a system ofcommutnicating process (a system can also be viewed as a
single processes which is considered as an entity associated with a set of states and
events and a class of behaviors). intuitively, a behavior is an execution, of a process.
During a process execution events occur, where such occurrences are called actions.
At any point in an execution, a process is in a single, possibly composite state.
Actions cause certain states change to other states, such changes are called (state)
transitions [4].

A process behaviour is formally defined as a labeled sequence of transitions,

S, S2 Sn, where the label, Li is the action causes
state S changes to S, and 1 I i 5 (n - 1).

This formula represents the effect of a communication action. This action
associated with communication via a process data. The labeled transition
S ------) S' is formally interpreted as follows: the action represented by the label
L, causes the state S changes to state. s'. The class of behaviors associated with a
process is defined by a labeled state transition system, < S, L, T >, where S is a set
of process states, L is a set of labels representing communication actions, and T is a

Semantically Extended Data Flow Diagram ...

relation [S, L, S], whose elements are labeled transitions. In this work an algebraic
approach is used to specify a labeled state transition system. Processes are viewed as
Abstract Data Types (ADT's) and are specified algebraically by Algebraic State
Transition System (ASTS's), as follow [5][6] :-

Transition Specification is Spec Name

State Specification is State Spec

Label Specification is Label Spec
Lable

Transition relation is state) state: state label state

(a) The State Specification (State Spec):

It is an algebraic specification characterizing the states of the process. It
defines state constructors, where its function creates process states [7].

(b) 77te Label Specification (Label Spec):

It is an algebraic specification characterizing the labels of the process. It
defines label constructor, that is, its functions creates process labels. The label
constructor PAR is defined in all label specifications with hctionality

PAR : Set label + label,

Where, a set label instance is a set of labels of type label, the constructor PAR takes
a set of labels, and returns a label representing the parallel occurrences of the actions
represented in the argument label set as follow [8]:-

The axiom characterizing PAR in label spec is :

For all Lset, S : Set label

PAR ({ PAR (Lset)) U S) = PAR (Lset U S)

Where, { PAR (Lset)) is a singleton

And U is the set union operation.

(c) Tlte Transition Axioms:

Axioms of an Algebraic State Transition System (ASTS) define the transitions
of the process's state transition system. The axioms, are of the form:

Where S,, Sj are states defined in state spec, L is a label defined in label spec,
% and C is a boolean expression stating the conditions under which the t ryi t ion in the

conclusion can take place: that is, if C is hue, then the transition S, -/ S, can
take place. If a transition can't be shown to be true in an ASTS's axiom system, then
it is said to be undefined in the ASTS [9]. The semantics of a C-DFD are

batma A. Umara ana Kenam A. miunmuuu

characterized by an ASTS created in a bottom-up manner from ASTS's
characterizing the semantics of individual C-DFD components in the following
manner:

(I) Derive ASTS's characterizing the behaviour of each C-DFD component from
specifier-supplied descriptions. The resulting set of ASTS's, together with the
C-DFD, is called the Basic Interpreted C-DFD [4].

(2) Derive an ASTS characterizing the synchronous interactions that can take place
among C-DFD components from the Basic Interpreted C-DFD. This ASTS is
called the Synchronous Interaction Specification (SIS). The SIS, together with
the C-DFD, is called the Basic Ext-DFD [2].

(3) Derive an ASTS characterizing the permissible time-dependent relationships
among the synchronous interactions specified in the SIS from the Basic Est-
DFD. The resulting ASTS is called the Behavioral Specification (BS). A DFD
representation of the specification - generation method is given in Fig 2:-

C-DFD (with State Transition Diagram)

Descriptions
Specifier

Basic f x

Interpreted

generator

Basic
Ext - DFD

schemas (A,
I

Specifications schemas generator

1 E d - DFD I
- - . - - - -

Fig.2 Extracting the Formal Specifications from C-DFD'S

(0 Phase one of the Speci$cation-Generation Method:-

ASTS'S characterizing semantic models of C-DFD con~ponents are created
from specifier-supplied descriptions and specification schemas. The specifier- .*
supplied descriptions are analogous to the traditional Structured Analysis (SA) data
dictionary definitions and data transform specifications[8]. For (asynchronous) data
flow and data store components, specification schemas are instantiated with formal
specifications derived from the specifier's descriptions of transmitted or stored data -
to produce formal specifications characterizing their structure and data access
behavior.

Semantically Extended Data Flow Diugram ...

Phase two ofthe speciJicati0n:-

It determines which process actions defined in phase one are to be
synchronized. For example, a read from a data store action of a data transform must
be synchronized with a read action the data store. A specification defines the effects
of synchronous transitions. That is, transitions caused by synchronizing actions is
derived form the data and control relationships depicted in the C-DFD using rules
which state what type of interactions depicted in a C-DFD result in synchronous
transitions [lo].

The driven SIS in phase two is:

The ASTS defines the synchronous interaction that can take place among the
processes defined in phase one and is of the form :

Synchronous Interaction Specification is Synchspec

C-DFD Component Specifications are Compspec

Application State Specification is Appstate

Application Label Specification is Applabel
Application Synchronous transition relation S) S' : appstate applabel appstate

Label

The C-DFD component specifications named in compspec are the ASTS'S
generated in phase one. The application state type, appstate, is an aggregation of its
C-DFD component state types and is algebraically defined in appstate [ll].

b
The specification Applabel defines the SIS label constructor SYNCH, with

fknctionality SYNCH :

Set label + applabel

Where instances of set label are sets of component labels specified in the
Basic Interpreted C-DFD. The constructor SYNCH takes a set of component labels
and returns a single label representing the action formed by synchronizing the
actions represented by the argument label set. The resulting label is called a
synchronous label aqd is denoted SYNCH (LI, I) where L1 . . . , L, arc the labels
in the argument set of Labels, the action represented by SIS labels are called
synchronous actions [12].

The axioms of the SIS, Synch Axioms, define transitions caused by
synclvonous actions, for example:-

& L Given that the transitions PI ------) P'I, PJ * P'J. Can take place in an
application state < PI, , P,, Pj+ I,P, > then the synchronized effect of the
actions labeled LI, , Lj is defined by axiom :

-*

Fatma A. Omara and Reham A. Mahmoud

L
< PI,. , P,, Pj + 1,Pn > ----+ < PI, Pi, Pj +I , . . . J'n '

(rIr) Phase Three ofthe SpeciJication:-

In this phase, constraints on when the synchronous interactions can take
place are specified. The ASTS is used to derive the Behavioral Specification (BS)
which is considered as an extension of the SIS. The BS concerns definitions of the
effects of actions represented by parallel action labels (application labels built using
the PAR constructor) [I 3)f 141.

3. Semantically Extended-DFD of Methodology Information Exchange Service
(MIES) Problem:

The MIES problem in the Multimedia environment, is concerned with
transmitting the pictures, voices; especially pictures the form of stream of frames
using Open Distributed Processing systems (ODP) (See Appendix-A) [151.
According to MIES problem three processes are used: Generating stream of frames
for pictures, Monitoring stream of frames for pictures according to Quality of
Service Violation (QoS-Violation) process and finally the Receiving stream of
frames for pictures. The formalization of this problem is driven by using the Ext-
DFD [16]. The Monitoring state of pictures which belongs to QoS-Violation phase
wilI be explained in details. The C-DFD elements of the Monitoring State of pictures
are be illustrated in Fig. 3. When the producer generates the stream of frames, they
will be sent to the check stream. The check stream state examines the stream of
h e s by putting this stream in a monitoring mode (Monrnod) to check if it is
abnormal or normal according to the Quality of Service conditions. If it is abnormal
then check stream state goes toward the rnodifjl stream state via monitor and runs the
modifications. According to their priority of arrivals of the (Rt state 1) which is the
state of the input stream which will be modified and after modifjring the state of the
output stream (Wt state), then the final modified input state (Rt state 2) will directly
goes toward the check stream state and becomes stream status (Sstatus) then arrive to
the consumer. The Generating stream phase can be implemented exactly as
Monitoring State; but with no consumer and Modify Stream state, and Generate
Stream is replaced by Check stream. Also, the Receiving phase will be implemented
in the same way with replacing Check stream state by the stream state, and replacing
Receive stream by the Check stream.

Semantically Extended Data Flow Diagram ...

Fatma A. Omara and Reham A. Mahmoud

3.1 The Basic Interpreted C-DFD of Monitoring Process for MIES problem:

3.1.1. Phase one

In this phase,-specifier created descriptions of C-DFD components are used to
creat ASTS's characterizing their behavior [2][15].

A- Specifying the Data Domain: /-

.;
The data transmitted on a C-DFD's data flows and stored in its data stores

make up the data domain of the C-DFD. A C-DFD'S data domain is defined by the
specifier using a Data Description (DD) language. A DD language provides
fhctions for constructing data types from elementary (non decomposable) data
types. Elementary types are associated with algebraic specification that define
functions on the instances. Two kinds of constructors are used in a DD to build more
complex types from elementary types; Aggregate and Union constructors. The DD
formats corresponding to the type constructors are :

Aggregate : t = < tl, , t. > .-.

The type t is an aggregation of the data types ti, ... , t,. Each type
, 1 . is associated with a unique identifier which is the type name, t,. if the
name is unique, or a unique alias if the type name is not unique in the aggregate.

Union : t = tl + tz

The type t can either be tl or t2. This type is associated with boolean functions A

of the form ist where t is a type in the union and is, (d) is true if and only if d is of .
type t. +.

P

Specification 1 illustrates the data domain for the MIES problem which is
considered the stream of Erames for pictures. Also it defines the data stored in each
stream state which could be stream state of frames for past picture encoded as i-pic
or for current picture has closest past picture encoded as b-pic.

Specification 1: Date Domain (DD) defining the data stored in stream state.
.- Data description is Sstate

I* Data domains is stream states of frames for pictures */

Sstate = < i - Pic, p-Pic, b-Pic >

/*stream states are states of past pictures, current picture of future pictures */ ->

Where for dl Sm : Sstate;

The identifier to define

i - pic = i - encoded (frame) I* stream state of past picture *I > - ..

p - pic = (frame, closest past) I* stream state of current picture *I

Semantically Extended Data Flow Diagram ...
b-pic = (frame, closest past, closest future)

I* stream state of future picture */

Specification 2 explains the data domain fordl data flowing on stream mode
(Smod) which it is a state illustrates the kind of stream of frames (new or not), and
the kind of its state according to the previous states in specification I . If the stream
of frames is new according to cornm which is a union type of stream states then the
boolean function issst, is true, and the state S is a type of STssmt, which is domain of
all stream of frames and their states. If the stream isn't new then belongs to the ST'
which it is the domain of the streams of frames with regardless for their states. Also,
this specification illustrates the domain of the state Sadjust which it is considered the
adjust stream of frames for picture and its current state. Finally this specification
explains the domain of the state Sstatus which shown the normal case or abnormal

% case for the stream of frames for picture according to the quality of service

conditions through the union type Sindic expresses the qualifying for the stream of
frames for pictures.

Specification 2: DD's for data flowing on Smod, Sadjust and Sstatus.

Data description is Smod I* data description for the state Smod */

Using Sstate I* using stream states *I

Comm = New + i - pic + p-pic + b - pic

I* domain illustrates the different states of the frames for pictures *I

ST = Stream + Sstate

I* type of elements contains the different streams with their different states */

C ST' = Stream

I* the type of elements contains the different streams only */

Smod = < Comm, S > Where for all S : Smod

I* the aggregation domain includes the stream and its state */

1. S. comm = New 4 issbte (S.ST)

I* if the stream is new then belongs to the type ST */

2. S. comm + New issstream (s-ST')
s

I* if the stream isn't new then belongs to type ST' */

The type Smod is a two- place aggregate in which the first place indicates the
type of picture range modification required. If the first position has value New then
the range in the data store stream state is to be replaced by the range in the
aggregates second position remains as a previous state of the Smod aggregate.

Fatma A. Omara and Reham A. Mahmoud

Data description is Sadjust

I* data description of the adjust stream and its state */

using Sstate

Sadjust = < picture : streams Sstate >

The type Sadjust is an aggregate in which the first position identified by
picture is a picture value and the second position is picture state.

Data description is Sstatus /* data description of the stream status *I

Sindic = Normal + Abnormal

/* union type of normal and abnormal cases of the stream */

Sstatus = < pictures streams, Sindic > 1

I* stream of frames according to the QoS conditions */

The type Sstatus is an aggregate in which the first position (identified by
picture) is a picture value and the second position is a value indicating whether the
picture is within or out of the normal range.

Specification 3: data specification for the data flowing on Smod and Sstatus

Data specification is Smod /* data specificaiton for streams mode */

Using Sstate I* using stream states */

Sorts Smod, Comm, ST

/* the sorts used to build this specificaiton is stream mode elements, colnnl elements
and ST elements */

Constructors

New, i - pic, p - pic : S ---+ Comm

/* the stream may be has different states and so, towards to comm type *I

-: Sstate ---+ ST

I* the stream may be only one stream of one frame in ST domain * I

< : Stream + ST

I* the stream state may be the aggregation of only one stream of many frames in ST i

domain */

< -, ->: Comm, ST ---+ Smod

I* the aggregation domain all its elements have the properties of the domains Comm
& ST and these elements is a type of Smod state *I

Semantically &tended Data Flow Diagram ...
Definition of the predicate

Ohmod : Smod /* state belongs to Smod state */

Axioms

For all S1, $1 : C: Comm

1. 0ksmod (< New, < S1, s'I>>)

/* if OksmOd state is new then the stream S1 changes to stream S'I */

2. C # New + Obm0d (<C, < S1>>)

I* if the Okmod state isn't new then the stream has the same state *I

Data specification is Sstatus

Sorts Sstatus, Sindic

Constructors

Normal, Abnormal : + Sindic

< -, - > : Stream Sindic --+ Sstatus

I* the aggregation domain, all its elements have the properties of the domains Sindic
and these elements is a type of Sstatus state */

Constraints on data types are defined using a where statement which is of the
form where P, where P is the first - order predicate formula. For example, if the first
and last position in an aggregate type must maintain a less than or equal to
relationship, this is expressed as:

t = < tl,, t, >where for all a : t, (a.tl) I (a. t,)

/* a type tt contains the data transmitted and stored in the type t, */

A DD is of the form:

Data description is DD name

I* description of the data domains name of the type *I

Using DDes

/* using the data domains for same of the data transmitted and stored *I

Type Defns
%

I* explaining the arithmetic operations on rational numbers */

Where Data Domains names (DDes) are the names of DD's defining the types
that are used to define the types in type Defns. Specification 1 and Specification 2
give DD's for some of the data transmitted and stored in the C-DFD (See

Fatma A. Omara and Reham A. q h m o u d m- : 9j-K 5

Appendix -A). The type numb&s-elementary in the used DD language, where an
instance of number is a rational number which is associated with the usual arithmetic
operations on rational numbers. The data flow pictures transmits data of type
number- that is, picture states are ~gpqps,ented by numbers The data flows (rtstatel),
(rtstate2) and (wt state) transmit data of type state (see in detail Refs. [2] , [15], [l6]).
Similarly the first specification of generating and receiving stream of frames for
defining data domain for these pro2eSse.s can be done.

B- Specifying Data Flows:

A data flow is interpreted as either an asynchronous or synchronous data
interface between its generator and . 2 . g ~ P . . - receivers. A synchronous data flow is one which
requires its generator and receivers to cooperate in order for data communicat~on to
take place. Communication via a sykhronous flow is effective only when all the - c ...
receivers and the generator of-the flow are ready to accept and send data,
respectively, on the flow. The behd$id?.of aspchronous data flow is implicit in the
specification of the synchronous'-ihf&ctions - - between its generator and receivers.
which is created in the second pha&?of*&r specification generation process [2].

.* . _C

Specification 4: state and label specification for the Queued flow Sstatus.
4 -

Queued flow State Specification is QS-Sstatus

/* the states are arranged in queu

Data specification is Sstatus, L s -

State is Queue

Constructions

Empty q : + Queue /*'ift~l&e A - is empty queue, then no elements*/
, \ - >

Add q : Sstatus queue ---+ Queue, . _
* , \ .

I* if the operation is adding then the peue increase with new stream statue (Sstatus) *I

Operations

Del q: Queue --+ Queue

I* del operation means remove

Top : Queue + Sstatus

/* top operation means add a new stream s ta t~~s *I
Operation axioms

For all e : Sstatus; q : Queue

1- del q (add q, (e, empty q)) = empty q

I* del operation of the empty queue returns to the empty queue */

Semantically Extended Data Flow Diagram ...

2- q + empty q = deI q (add q (e,q)) = add q (e, del q (q))

/* del operation of the element has already added so, no effects *I

/* top operation means the increasing of the elements in queue *I

4- top ((add q) (e, empty q)) = e

/* add operation to the empty queue so, the queue will be increased by one
element *I

Queued flow Labels Specification is QL - Sstatus

/* the specification of the labels */

Data specification is Sstatus

Label is qlable

Constructors

Sendsstatun Receivessbtu, : Sstatus --+ qlabel

I* lables domains which arrange in queue have the operations send, receive */

Specification 5: Queued flow specification for data flow Sstatus

Transition specification is Q - Sstatus

State specification is QS - Sstatus

Label specification is QL - Sstatus
L Transition relation is q -----+ q : Queue qlable Queue

Transition Axioms

For all Sstatus, q : Queue, L : qlabel
L 1- L = Receivesstatus, (e) + q -----+ add q (e, q)

/* receive operation means adding the new element e to the queue */

2- q +empty q, L = Send~,.t,,, (top (q)) -+ q -4, del q (q)

I* send operation means removing an element e from the queue *I
7 The ASTS characterizing the behavior of a queued flow is created by

instantiating the Queued Flow Transition Schema (QFTS) with the Queued flow's
state and label specifications, while the ASTS for a variable is generated by
instantiating the Variable Transition Schema (VTS) with variable state and label
specification. An instantiation of the QFTS for the data flow Sstatus is given in

Fatma A. Omara and Reham A. Mahmoud

specification 5. Axioms 1 and 2 of Q-Sstatus define the change in states caused by
the receive and send actions, respectively.

C- Specifying Data Stores

J ~ J the process vie of a data store, a data store state is an instance of an abstract
data type (e.g., an indexed list of values), and a data store label represents a data
store access action. Data store transitions define the effects of access actions on data
store states [2], [15].

Specification 6: A single value data store DSS.

Data store state specification is Name

Data specification is data spec (sort is data)

Sorts readvalue, store

/* the sorts of the operation are used read, store */

constructors

< - >: data ---+ readvalue

/* the read operation means increasing element in the data store *I

Undefi ---+ readvalue

/* the read operation may be a reading to undefined value */

empty store: -+ store

I* the empty store can't be a domain for any operation */

put: data --+ store

/* the put operation means adding dement to the store */

Access operations

Read : store+ readvalue

- Reads the value in the data store.

- If data store is empty it returns the value undefined.

Writ: store data + store

- Replaces the value in the data store with a new value

I* the general definition of the write operation *I

Axioms

for all S : store; V : data

Semantically Extended Data Flow Diagram ...

1- read (empty store) = undef

I* the read operation of the empty store returns the undefined value *I

2- read (put (V)) = <V> I* the read operation of the value V*/

3- write (S,V) = (V) I* the write operation of the value V*/

Specification 7: ASTS for data store stream state

Transition Specification is Sstate

I* transition specification of stream state */

State Specification is state' I* state specification of stream state */

Label Specification is Sstate label

? I* label specification of stream state */

Transition relation is S1 4 ~ 1 ' : Spstate SplabeI Spstate

Transition Axioms

For all d : Sstate, N : Spstate, L : Splabei

1- L =Read ('rt state l', d), read (N) = id> N A N

I* the read operation to the input stream state (rt state 1) which is a type of d*/

2- L = Read (kt state 2', d), read (N) = <d> 6 N --% N
I* the read operation to the final modified input stream state (rt state 2) whch is a
type of d*/

3- L =write ('wt state', d) a N ---4-) Put (d)

I* the write operation to the output stream state (wt state) which is a type of d *I

D. Specifing Data Transform

A data transform is an entity that transforms input data to output data and/or
signals. The outputs of a data transform depend solely on its current inputs. This
isn't a serious restriction on what can be modeled by a data transform, since
processing elements whose outputs are also dependent on past inputs can be modeled
as a data transforms communication with a data store that stores the effects of past
executions. The behavior of a data transform is defined by the specifier via a Data

-, Transform Specification (DTS). DTS consists of two parts: a header and a statement.
The header of a DTS declares the name of the DTS and the variables used in the
DTS's statement part. The statement language consists of a set of basic statements
and a set of statement constructors.

Fatma A. Omara and Reham A. Mahmoud

Specification 8: data transform specification for modify stream state.

DTS modify stream state (in 1: Smod; in 2: Sstate)

I* data transform specification for modify stream state according to value in 1 which
belongs to stream mode domain and the value in 2 which belongs to stream state
domain */
Receive ('Smod', in 1);

/* receive operation for the element in 1 which belongs to Smod *I
If (in 1. Comm .f new) then

/* If in 1 state which belongs to comm domain not new then send the input stream
state (rt state I) which belongs to Sstate *I

Send (kt state 1', in 2);
If (in 1. Comm = i - pic) then

/* If in 1 state which belongs to cornrn domain is the state for stream of frames for
past picture then receive to (wt state) as output stream and in 1 state is type of St
domain and in 2 state is the state for stream of Frames for future picture *I

Receive ('wt state' , < in 1. St, in 2. b-pic>)

Else

Receive ('wt state', < in2. b- pic, in 1. St>

/* If the previous condition not true then receive to wt state as output stream and in 2
state is the state for stream of frames for future picture and in 1 state is type of St
domain */

Else

Receive ('wt state', in 1. St);

E. External Entities

In structured analysis, descriptions of external entities are often limited to
meaningful names and specifications of their interfaces with the application (i.e,
their input and output flows). Also, the generation and receipt of application data
andlor signals by external entities may be dependent upon the application's
behaviour. We use a State transition Diagrams to describe the behaviour of external
entities as it pertains to their interaction with the application as in Fig. 4

No Interact
t Init

Fig. 4 State transition diagram for the External entity consumer

Semantically Extended Data Flow Diagram ...

S~ecification 9: ASTS for the external entity consumer.

External Entity Transition specification is Consumer

State specification is superstate

Label specification is superlabel

Transition relation is

S *: Superstate Superlabel Superstate

Transition axioms
Ini t

1- No Interact -+ Setting

2- setting ?$ Monitoring
stop 3- Monitoring ,Setting

By specification 9, phase one is ended. The generating process and receiving
process all of them can be done.

3.2 The Basic Ext-DFD of Monitoring state for MIES problem

3.2.1 Phase two

In this section we describe the activities carried out in phase two of our
specification- generation process. In this phase, we describe how the Synchronous
Interaction Specification (SIS) is generated from the Basic interpreted C-DFD [2],

[Id].

A. identifying synchronous interaction

Synchronous interactions in an Ext-DFD occur across synchronous flows.
during asynchronous data communication, and as a result of event occurrences.
Some synchronous interactions are explicitly depicted in C-DFD's by control and
synchronous flows, while others aren't. [2]

B. Specifying the Activation and Deactivation of Data Transforms.

The activation and deactivation of data transforms are specified in terms of
transition on task sets. A task set consists of objects called tasks of the form
<dtname, dtstate>, where dtstate is a state of the data transform named dtname.
Intuitively, a task set of an application reflects the states of its active data transforms.
Lables represent activation and deactivation actions are in the form:

*

Activation: activate (<dtname, dt>) represents the activation of the data transform
named dtname with a state dt.

Deactivation: deactivate (dtname) represents the deactivation of the data transfornl
named dtname.

Fatinn A. Omara and Reham A. Mahmoud

Sate transforms are associated with State Transition Diagrams (STD's) which
depict the effect of signals on application modes. A STD is a diagram in which states
are represented by named rectangular boxes, and transition, caused by signals, are
represented by directed arrows between boxes. The transitions are annotated with
labels consisting of a top and bottom part separated by a horizontal line. The top part
of a label gives the conditions under which the transition can take place. The
conditions are expressed in terms of a single or combination of signals. The bottom
part of a label states what events are communicated via the state transform's output
flows; that is, what transforms are activated and deactivated, and what signals are
generated to external entities and other state transforms. An example of a STD can

be in Fig. 5.

Activate: lModify stream state

Start Stop

D e r t i ~ t e : MaPB stream state (' T 1 Deactiwte: check s tream
Activate: check stream I Mimitoring I Activate: Modify stream state

Abnorm '7 Norm

Deactimte:- Adjust process

Activate: Adjustproces s

check stream

Reacting Deactiwte: Adjust process

Actiwte: Modify stream state

Stop

Fig. 5: State transition diagram for Monitoring process of MIES problem

C. Spec;fying Synchronous Interactions

An application state for the monitoring applications is of the form < dts, tp, t,
ts, s, mode >, where dts is a task set, tp is a state of the data store stream state, t is a
state of the variable stream, ts is a state of the queued flow Sstatus, S is a state of the
external entity producer, and mode is a state of the transform Monmod.

Labels represent the effect of synchronous interactions on an application's
state are created by the label hnction SYNCH, which takes a set of labels and
returns a synchronous label representing the effect of synchronizing the actions
represented by the labels in the set [2]. When the synchronization occurs across a
data flow, a shortened form of the SYNCH label that states only the data flow name
and data value will be used. For example.

SYNCH (Receive (flow, d), send (flow, d)) is shortened to SYNCH (flow, d).

Semantically Extended Data Flow Diagram ...

Specification 10: A partial annotated Synchronous Interaction Specification
(SIS) for the monitoring application.

Synchronous Interaction Identification is MonSynch

Synchronous Transition axioms

for all dt :dtstate ; a : taskset ; dtname : transformname ; L : tlabel

I* for data transform state dtstate two synchronization operations. First,
activate operation is true according to the function is, the state a in taskset returns to
the state with another name and another state and has the properties of state a.
Second, the deactivate operation which the state a be removed from the taskset *I

1. L= activate (< dtname, dt >),
L -isin (dtname, a) Q a ---+{ < dtname, dt 3) U a

2. L= deactivate (dtname) 0 a 4, deletestate (dtname, a)

for all P , P' : dtstate ; a : taskest ;

dtname : transformname ; L : dtLabel

Al. ** Synchronous interaction between the external entity producer and the receive
action of the Stream **

L
L 1 = Receive stre,, (Stream), S A S/ , L2 = SYNCH (Ll)

< a, tp, t, ts, Monitoring, Reacting >

< a, tp, t', ts, Monitoring, Reacting >

B1. ** Synchronous read interaction between modify stream state and the data store
stream state **

L, = Read (' rtstate 1' , tp), L =Read ('rtstate l', tp)

L, = SYNCH , ~ 2 1 , a --!+ a', tp -!2+ tpi , a3
< a , tp, empty V, empty q, setting, Ready >

L3

_^___,
< a' , tpl, empty V, empty q, setting, Ready >

B2. **Laws defining similar synchronous interactions between data stores and data
transforms* *
C1. ** Effect of h i t event**

S S, L1 = activate (< 'modify stream state', (P2, null >>),

Fatma A. Bmara and Reham A. Mahmoud

L2 = SYNCH (hit , LI), empty set 4 a

< empty set, tp, empty v, empty q, S, Off >

L2

< a, tp, empty v, empty q, S ', Ready >

3.3 The Behavioral specification of monitoring state for MIES problem

3.3.1 Phase three

The final phase of our specification derivation process determines the time-
dependent relationships between the synchronous interactions specified in the SIS.
Essentially, this phase determines what happens when application events occur in

3

parallel. In some cases, the effects of parallel actions appear sinlultaneous; in others,
they may be forced into a sequential order in which some event may have priority
over others f 131.

The PAR label constructor creates labels for actions whose constituent actions
affect independent parts of an application, or have a well-defined net effect on the
state when carried out in parallel. The following rules determine which application
actions can become constituents of a parallel action [14]:

Actions that affect only mutually exclusive parts of an application state - that
is, independent actions can be composed by PAR

Actions that affect common parts of an application's state can be composed by
PAR if and only if the actions associated with the common parts have well
defined net effects on the shared parts when carried out in parallel.

9

For example, the synchronous interaction between the receive action of the
data transform checkstream and the second action of the variable stream can be
carried out in parallel with the synchronous interaction between Adjustprocess and
the external entity process. The sendreceive interaction between the exterilal entity
producer and the variable stream can't take place in parallel with the sendlreceive
interaction between stream and the data transform checkstream, because the effect of
parallel send and receive actions on variables isn't defined -thus only sequential
occurrences of access actions on variables are possible.

4- The Cottclusion -

In this paper a technique for associating semantics with Control-Extended
DFD'S is described. The specification characterizing the semantics of a C-DFD GU~

be viewed as f o n d design specification of the application modeled by the
C-DFD. The formal specification can be subjected to formal manipulations
facilitating their use in the rigorous validation and verification of application

Semantically Extended Data Flow Diagram . ..

behaviour. Where formal descriptions need to be created by the specifier, we have
tried to make the description language as intuitively appealing as possible. The
formal specification created as a result of our technique may still be unreadable by
persons untrained in the specification language, but the less formal descriptions form
which the specification was generated should provide intuitive notions of the
semantics captured in the formal specification.

As a design tool, the technique has the potential to alleviate the problems
associated with the traditional Structured Analysis/Stn~ctured Design method. A
major problem cited with the use of the SA/SD method is the difficulty of translating
SA specifications to SD specifications, and the irreversible nature of the translation.
The problems can be attributed to the change in perspective as one goes horn SA to
SD.

The ability to use (suitable extended) DFD's as design specifications can
provide a coherent, reversible transition from SA to design, eliminating some of the
major problems associated with the SAISD method. Furthermore, by associating
DFD's with a less operational formal semantics suitable for use at the requirements
specifications stages of software development, and a technique for verifying the
operational specification against the less operational specification, one has the ability
to provide a provably consistent transition from SA to design. A less operational
semantics for DFD's has been provided by using the LOTOS specification
language.

Fatma A. Omara and Reham A. Mahmoud

Appendix - A :

ASTS
DFD
C-DFD
EXT-DFD
BS
ADT
State Spec
Label Spec
SIS
App State
App Label
DD
DDes

QS
QL
VTS
DTS
STD
MIES
PAR
SA-SD

Algebraic State Transition System
Data Flow Diagram
Control - Data Flow Diagram

Extended Data Flow Diagram
Behavioral Specification
Abstract Data Types
State Specification
Label Specification
Synchronous Interaction Specification

Application State

Application Label
Data Description
Data Domains Names

Queued State
Queued Label
Variable Transition Schema
Data Transform Specification
State Transition Diagram
Methodology Information Exchange Service
Parallel Constructor
Structured Analysis - Structured Design

Semantically Extended Data Flow Diagram ...

REFERENCES

[I] T. Demarco, Structured Analysis and System Specification. NJ: Prentice-
Hall, 1978

[2] Robert. B. France, "Semantically Extended Data Flow Diagrams: A formal
Specification TooI,". The institute for Advanced Computer Science,
University of Maryland, IEEE no. 910707 1 1992.

[3] R.B. France and T.W.G. Docker, "A formal Basis for Structured Analysis", in
proc. Software Engineering' 88, 1988.

[4] D. Hatley and I. Pirbbai, Strategies for Real - Time System Specification.
Dover, 1987.

[5] R.B. France, T.W. G. Docker, and C.H.E. Phillips, "Towards the Integration
of Formal and Informal Techniques in Software Development Environments,"
in proc. New Zeland Comput. Conf. NZCS, 1987.

[6] H. Gornaa, "Software Development for Real Time Systems," commun. ACM,
Vol. 29, No.7, 1986.

[7] R.B. France, "A Formal Framework for Data Flow Diagrams with Control
Extensions," Ph.D. thesis, Massey Univ. (New Zealand), 1990.

[8] E. Astesiano and GReggio, "SMOLCS- Driven Concurrent Calculi," in proc.
TAPSOFT' 87. Springer-Verlag, 1987.

[9] E. Astesiano, G. Reggio, and M. Wirsing, "Relational Specifications and
Observational Semantics," in Mathematical Basis for Compter Science
(Lecture Notes in Comput. Sci, Vol. 249). Springer-Verlag, 1986.

[I 01 T.W.G. Docker, "SAME- a Structured Analysis Tool and its Implementation
in Prolog," in Logic Program, Proc. 5th Int. Conf. Symp. MIT press, 1988.

[l 11 E. Astesiano, A. Giovini, and G.Reggio, "Data in a Concurrent Environmnet,"
in proc. Int. Conf. on Concurrency. Springer-Verlag, 1988.

[12] C. Gane and T. Sarson, Structured Systems Analysis: Tools and Techniques.
Prentice- Hall, 1978.

[I3 1 T. W.G. Docker, "A Flexible Software Analysis Tool" Inform. Software
Tech., Vol. 29, no. 1, 1987.

[14] R. Balzer and N. Goldman, "Prinicples of Good Software Specification and
their Implications for Specification Languages," in Software Specification
Techniques. Reading, MA: Addison-Wesley, 1986.

1151 G.S. Blair, L. Blair, and J.B. Stefani, " A specification Architecture for
Multimedia Systems in Open Distributed Processing Systems," Distributed
Multimedia Research Group, Computing Department, Lancaster University,
United Kingdom. 1997.

[16] Elie Najm, Tean- Bernard Stefani, "Formal Semantics for the ODP
Computational Model". Computer Networks and ISDN Systems 27 (1995).
1305-1329.

Fatma A. Omara and Reham A. Mahmoud

