
Comparative Methods for Analysis of Plane .' 

Abstract : 

The analysis of soil structure interaction is still a query and on the basis of different 
assumptions; several methods have been elaborated for such analysis. Different methods 
used for analysis of raft foundations are considered. A computer program has been 
developed for analysis of raft foundation considering the interaction between the raft and 
the underlying soil strata. In the analysis; the raft is divided into a certain number of 
elements and the soil is modeled by a series of an W t e  number oflinearly elastic 
springs. Each spring has a stifthess equal to the modulus of subgrade reaction which 
varies according to soil situs. 

Methods for analysis of raft foundation investigated in this study include: the finite 
difference method , the grid method, the raft analysis as individual strips on elastic 
supports , and the finte element method . 

The different methods are considered along with the well known program SAP 80 
and the results for the considered case gave close results . Thus the program can be 
effectively used for analysis of raft foundation using any of the previously mentioned 
methods . Finally, a suggested method for design of the raft foundation is presented . 

1 - Introduction : - 
Raft (or mat) is usually used to define a substructure in which loads are 

transmitted to the soil by means of a continuous slab covering the enthe area of the 
bottom of a structure, like floor. Rafts are usually designed,and analyzed as a rigid or 
flexible plates resting on an elastic foundation. Mats are usually used when the building 
loads are so h e ~ q  or the allowable soil pressure is so small that the individual footings 
would cover more than about half the building area. In addition to the advantage of 
distributing the building loads over the entire building area, mats are used to decrease 
differential settlements and total settlement. Mat foundations are also used to resist 
hydrostatic uplift and bridge over isolated pockets of soft soil. 

The simplified methods or rigid methods of analysis are easy to use and do not 
need computer assistance. However, the accuracy of these methods is very poor and in 
many cases the results are diverged from the right solution. Moreover, they can handle 
only a certain geometry. On the other hand, in the flexible methods, the raft is assumed to 
be relatively flexible and its flexural rigidity is taken into account for the conclusion of 
the contact pressure between the soil and the raft. These methods take also the effect of 
the soil stiffhess into consideration through the use of idealized soil model. 
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2 - Rigid Methods ( Con~wntional Melltods) : - 
In this method, the raft is assumed to be infinitely rigid and the contact pressure 

has planer distribution. The centroid of the contact pressure coincides with the line of 
action of the resultant of all vertical loads acting on the raft and the contact pressure q 
can be calculated from the equation: 

Where : 

R = EQ = Total loads acting on the raft. 

A = Total area of the raft. 

x,y = Coordinates of any given point on the mat with respect to the x and y axes 
passing through the centroid of the raft area. 

s, e, = Coordinates of the resultant force. 

IX , Iy = Moment of inertia of the raft area with respect to the x and axes 
respectively. 

The raft is analyzed as a whole in each of two perpendicular directions. Thus, the 
total shear force acting at any section across the entire mat is equal to the arithmetic sum 
of all forces (loads) and reactions (contact pressure).to the left or right of the section . 

: The total bending moment acting on such a section is equal to the sum of all moments on 
either side of this section. This solution is considered a highly indeterminate problem. 
Therefore, an approximate procedure may be adopted as the raft is divided into 
perpendicular bands , each band carrying a row of columns , taking full loads in each 
direction 

The solution by rigid methods are very approximate as the contact pressure 
distribution is considered plane, varying linearly and its resultant coincides with the 
resultant of all external loads and moments acting on the raft. So, such methods neglect 
the increase of the contact pressure near the columns and divides the raft into separate 
strips neglecting the shear transfer due to continuity between adjacent strips. Moreover 
they consider full column loads on each strip in each direction, which is very 
conservative. 

Good results can be obtained using methods when ACI- Committee assumptions 
for rigid footing are fulfilled.(') . 

3 - Flexible Methods : - 
In these methods, the raft is assumed to be relatively flexible and its flexural 

rigidity is taken into account for the conclusion of the contact pressure between the soil 
and the raft . These methods take also the effect of the soil stiffness into consideration 
through the use of idealized soil model. The resulting contact pressure distribution 



generally has a curved surface , which is more realistic than the rigid methods. Among 
the flexible methods are the following discussed methods. 

' _  
3-1- Ueanzs on Elastic Supports :- 

In this method the raft is analyzed in both directions as individual strips resting on 
soil. Each strip is analyzed under fbll column loads. The theoretical solution of a beam 
on elastic foundation was treated in considerable detail by Hetenyi(l946) (" . 

3-1-1. The L)iflerentinl Equntion of the Elastic line : 

The differential equation governing the behavior of a beam supported along its 
entire length by an elastic medium and subjected to vertical forces acting i11 the principal 
plane of the symmetrical cross section is given by : 

where : 

EI = flexural rigidity of the beam. 

x,y = horizontal and vertical coordinates. 

k = modulus of foundation. 

q = distributed load acted on the beam. 

Along the unloaded parts of the beam, where no distributed load is acting q = 0, 
and the equation al-~ve will take the form : 

' 

I 

The general solution of the deflection line of a straight prismatic bar supported on 
an elastic foundation and subjected to transverse bending forces, but with no q loading 
takes the form : 

y = eA'(C, cos hx + C, sin Ax) + eyk(C3cos hx + C, sin hx) (4) 

Here, h includes the flexural rigidity of the beam as well as the elasticity of the 
supporting medium, and is an important factor influencing the shape of the elastic line 
and the Cs are constants which can be determined from the boundary conditions. 

3-2- The Finite Difference Method :- 

This method is based on the assumption that the subgrade can be substituted by a 
bed of uniformly distributed elastic springs with a spring constant (coefficient of 
subgrade reaction ks) . 



In the mechanics of solution, the mat is divided into a grid . with sufficient divisions 
taken so that all columns fall at the intersection of grid lines. The grid should be 
subdivided so that Ax = Ay, the difference expression then being in their simplest from; 
however, it is easy to derive f nite difference expression for the case Ax + Ay. 

Form the foundation engineering standpoint, the plate problen~ is a concrete slab 
on an elastic medium . Timoshenko(l959) expanded the differential equation for 
deflection of such plate ('I : 

where : 

q = Intensity of load. 

p = Concentrated load at point of interest. 

w = Deflection. 

D = Rigidity of the plate = 
~t~ 

12 (1 - v 2 )  

a 4 ~  a 4w a411f 
Making direct substitution of - and 7 and and uing ax = a y =h, a x4 JY a x2a y2 

{he finite difference equation in terms of deflection at any point within a plate using a 
square grid will be : ( see Fig (1) ) 

The sign convension is based on +q and +p in the downward direction. The q- 
term may be upward soil pressure or downward plate loading. The soil pressure is based 
on the concept of subgrade reaction 

- q = k w  (7) 

The equation(6) can be applied at any intermediate point in the plate, but when it 
is applied at a point within two nodes of an edge or at corner, some of the deflections 
will fall off the plate. One of two approaches may be utilized: 

(1) Use of backward or forward difference expression. 

(2) Consider fictious points off the plate and use 



moment perpendicular to edge = 0 

shear perpendicular to edge = 0 

After the deflections are known, the bending moment at any point in each direction 
can be determined from theory of elasticity: 

Mx = Bending moment per unit strip in x-direction. 

M, = Bending moment in the x- direction not including the influence of bending 
moment in the y- direction. " 

My = Bending moment in the y- direction not including the influence of bending 
. moment in the x - direction. 

By using the finite difference operators, the total bending moment at any interior 
node can be expressed as (*) : 

3-3- Grid Method :- 

In this method ; the mat is discretized into a number of beam-column elements with 
bending and torsional resistance . The torsional resistance is used to incorporate the 
plate twist using the shear modulus G.The finite grid method produces non - conforming 
elements as well as interelement compatibility is insured only at the nodes. A theoritical 
development of this method and its application on mats was introduced by Bowles (2) . 

3-3-1 General Equation In Solution : 

For the following development refer to fig.(2) at any node ( Junction of two or 
more members) on the structure, one may write. 

Which states that the external nodal force P is equated to the internal member 
forces F using a bridging constant A. For the full set of nodes on any structure and 
deleting subscripts this becomes : 



An equation relating internal-member deformation e at any node to the external 
nodal displacement is : 

Where both e and x may be rotations or translations. Form reciprocal theorem in 
structural mechanics and the matrix [ B ] is exactly the transpose of the [A J matrix, 
thus : 

The internal- member forces (F are related to the internal - member displacements as : 

These three equations are the hndamental equations in the grid method of analysis. 
By some algebraic manipulation we can get the only unknowns in this system of 
equations namely { x ) as follows: 

with x's , the internal member forces which are necessary for design can be 
obtained. Referring to Fig. (3) and using the conjugate- beam principle and solving the 
equation, the forces can be found in terms of the end slopes el andez as follows : 

The forces F 4  and Fs are obtained from the spring equation for force deflection as 

F 4  = kl . e, F5 = kz . e, (17) 

The soil spring will be obtained (due to Winkler's model) from the modulus of 
subgrade reaction as : - 

L 
K1 = - bk, and 

L 
K2 = - bk, 

2 2 

where : 

L = The length of the element. 

b = The with of which the element is occupied. 

GJ  
The torsion factor for F3 is also included in the matrix which is equal to - 

L 



where : 

E = Young's modulus 

p = Poisson's ratio . 

j = The torsional rigidity of the grid element . 

The matrix equation is written as : 

I 

3-3-2- The Solution Procedure : 

First the element [S] [ A ] ~  is component by multiplying the element [S] matrix by the 
transpose of the element [A] matrix. Then the element [A] [S] [A]' matrix is obtained which 
is 6 x 6 and is placed at the appropriate locations in the global matrix [A] [S] [ A ] ~  matrix. 
Thus the displacement vector {X) can be obtained after inversing the [A] [S] [ A ] ~  global 
matrix and the element forces matrix is solved for each element in turn to find the element 
forces as : 

and (F) = [S] [ A ] ~  {x) 

4 - The Finite Element Method : - 

The process of subdividing all systems into their individual components or 
"elements" whose behavior is readily understood, and then rebuilding the original system 
from such components to study its behavior is a natural way in which the engineer or the 
scientist can proceed to solve a problem. 



4-1- Finite Element Teclrniques.for Raft Analysis : - 
Using the displacen~ent method (stiffness method) to formulate equilibrium 

equations, a rectangular element with twelve degrees of freedom (Three degrees of 
freedom at each node) is used to analyze the raft. 

By following the finite element technique, the whole raft is analyzed as an 
integrated system of a number of finite plates in bending, the elements are connected at 
nodes and resting on a system of infinite number of kinematically consistent springs. The 
origin of the global system of axes will be lying on the middle surface of the raft and the 
local axes are parallel to the global and the origin of the local axes is located at the 
center of the rectangular element as shown in fig . (4). 

The state of deformation of the raft can be described entirely by one quantity. This 
is the lateral displacement w of the middle plane of the plate. 

The plate-bending element used in this study is called MZC rectangle and is shown 
in fig(5 ). It has only one generic displacement (w) translation in z-direction and it 
produces convergent results. The nodal displacements are : 

So every node of the rectangular element in bending has three degrees of freedom 
which are 

(I) Vertical translation (w) normal to the plane of reft in z - direction. 

(ii) Angle of rrtation about y-axis (z) 
(ii) Angle of rotation about x-axis (-?f) 

Thus the result is twelve degrees of freedom and the local stiffness matrix of plate 
element will be of dimension (12 x 12). Therefore the global system of equations are : 

[kl ((1 1 = {PI (23) 

[K] = The global stiffness matrix which is the assembly of the local stiffness 
matrices of the plate elements and soil stiffness matrices each to their corresponding 
degrees of freedom. It is a symmetrical matrix of order (3n x 3n) where n is the total 
number of nodes. 

{q) = The displacement vector of the whole system and its dimension is (3n) and it 
is the assembly of nodal actions which is : 



I 

The symbol P,; denotes a force in the z - direction but M~ and M9 are moments in 
the x and y axes. 

From the previous discussion, we note that to get the displacements at the nodes 
with discretize the raft we must get the stiffness matrix for every element and assemble 
them to obtain the global stiffness matrix and get its inverse as 

((4) = [KI" {PI (25)  

4-2- Soil St@ness Tecltnique : 

The soil element stiffness matrix is derived by replacing the springs over the entire 
element with four springs at the nods. This can be achieved by dividing the soil into a 
finite element mesh identical to the mesh of the mat. Furthermore, it is assumed that the 
rectangular areas surrounding a given node, defined by the center lines of adjacent 
elements, undergo uniform deflection. Thus the soil is idealized as a set ofisolated 
springs (Fig. 6) capable of resisting compression only : 

where : 

k; = Soil stiffness at a node . 

A, = Area of element surrounding a node. 

k, = Coefficient of subgrade for the element under'consideration. 
I 

4-3- Stresses In The Rnft Elenzents : - 
After the element have been assembled and the structure has been analyzed for 

nodal displacements, the generalized stresses of selected points in each element may be 
obtained as follows : 

where : 

M, , M,, M, = The internal bending moment about x and y axes and the twisting 
moment 

[El = Matrix relating stresses to strains. 

[B] = Matrix gives strains at any point within the element due to unit values of nodal 
displacements. 

{qe) = Nodal displacements array for the element. 

Then the flexural stresses can be found with the aid of the following equation : 



Thus the stresses within the raft foundation, soil pressure and displacements can be 
determined. 

5 - The Conrpiter Progrcrrtr 

A computer program has been developed to analyze the sail Soundation in direrent 
numerical methods discussed before. This analysis is realized by dividing the raft into 
rectangular pieces creating a slab mesh consisting of elements and nodes. This procedure 
is called. discretization, so instead of solving the problem for the entire body one 
operation, the solutions are formulated for each constituent unit and then the discrete 
equations are combined to obtain the solution of the original body four methods are used 
in this analysis namely : 

1 - The finite difference method. 

2 - Raft analysis as a beam on elastic foundation. 

3 - The grid method where the raft is considered as an assembly of separate beams 
in the longitudinal and transversal directions. 

4 - The finite Element method. 

The mats may be subjected to any combination of vertical loads and moments. 
Moreover, the vertical loads may be concentrated or uniformly distributed over a 
rectangdar area of raft. These external loads are applied at the nodes where the 
displacements of the raft are calculated and the stresses are found. 

Using' Winkler model, the soil is replaced by individual springs under the nodes 
with different values according to the modulus of subgrade reaction. 

To compare the different methods of analysis, a raft model is chosen with 
dimensions and load locations as shown in (Fig. 6) it is 5 x 5m and 0.5 cm thick resting 
on sandy soil at - 3.0m from the ground level. The soil has modulus of subgrade reaction 
of 1600 t/m3 and allowable stress 30t/m2. The raft is divided into raws as shown in 
(Fig. 7) and elements and is analyzed by the different previously mentioned methods. 

The previously mentioncd methods are considered along will1 thc wcll known 
packaged S A P  80. For the case considered the results for the dill'erent i~lethods are close 
as shown in Figs. (8), (9) where the displacements and bending moment in the raft are 
plotted. 



6-2- Rnft Thickness Effect : - 

The raft thickness effect is considered by considering the pervious model with 
different thickness ranging from 0.25 to 1.0. It is concluded that a moderate value gives 
better result, small values make the raft very flexible while big thickness make the raft 
very rigid. The raR displacements and bending moments for the different axes are shown 
in Fig . (10) and (1 I). In this case the finite element program is used for analysis. 

For economic design, tl~cre is to takc a constant tliick~icss througli thc plarc rall 
and only the raft need to be thickened under the different loads to ensure safe punching 
stresses and in the same time the footing should satisfj the allowable soil pressure. Thc 
previous model is used with different thicknesses as shown in Fig. (1 2). 

A comparison of raft displacements and bending moments for constant thickness of 
0.5m thick and variable thickhess as in Fig. (12) is shown in Fig, (1 3). ( 14), (1 5) and 
(16'). It is clear that the raft with different thicknesses may be more suitable in some 
cases rather than raft with constant thickness. 

Different methods for analysis of raft foundation are investigated. A computer 
program has been developed for analysis of raft foundation according to the discussed 
methods considering the interaction between the raft and the underlying soil strata . The 
soil is modeled by a series of an infinite number linearly elastic springs. Different 
numerical examples are presented. The computer program has been proven to be 
adcquntc for analysis of ran founcfation'in an acculalc way. 
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Fig .(I) Finite Difference Model 
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Fig(3) Conjugate Beam Relationships between End Moments and Beam Rotaion. 
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Fig(5) Finite Element Model and its Degrees of Freedom. 

Fig .(6) Structural Idealization of Mat and Supporting Soil. 



Fig .(7) The Dimensions and Load Locations in the Raft Modci. 
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Deflection Dlstrlbutlon along Strip No.4 
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l:ig.(lO) Comparison For L>eliections of Diflerent Raft Thicknesses. 



Fig(l1) Bending Moments in Rafts with Different Thicknesses. 
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Fig.(] 5) Bending Mornents of Rafts with Different Thicknesses. 
*. , 

J3cnding Moment Distribution along Strip No. 4 

----. VdnbbMcLnaar 
.,... ...........,.. 

.c- =--.. 

v 

0.0 0.5 I 0 1.5 2.0 2.6 3.0 3.5 4.0 4.5 5.0 

DIST. (M) 

Fig.(16) Bending Moments of Rafts with Different Thicknesses. 






