Mansoura University Faculty of Engineering Dept. of Electrical Engineering

M.Sc Exam (8/9/ 2013) Full Mark : 100 Time allowed: 3 Hours

Analysis of Electrical Power Networks

Please Answer The Following Questions:

Question # 1: (30 Mark)

- a- Explain briefly the active power-frequency interaction and reactive power-voltage interaction in power system.
- b- Consider a three-bus power system where a shunt capacitor bank is switched at bus 2 to regulate the voltage magnitude of this bus to 1.02 p.u. A regulating transformer (RT) is introduced between buses (2-3) to regulate the voltage of bus 3. Consider RT is a magnitude regulator with off-nominal turns ratio a = 1.03. The input data of line and RT are given in tables 1 & 2. The system bus data is given in table 3. Carry out one iteration of load flow solution by Gauss-Seidel iterative method to find the following:
 - (i) Voltage of buses 2&3.
 - (ii) Reactive power generated by a shunt capacitor at bus 2.
 - (iii) Active and reactive power generated at bus 1.
 - (iv) Active and reactive power flow in line 2-3.
 - (v) Discuss the effect of shunt capacitor at bus 2 and RT on the system operation.

Table 1. Line input Data (WVAbase -100)						
Branch	Bus to Bus	Series impedance (Z p.u)	Ysh/2			
Line	1-2	0.005+ j0.04	j0.02			

Table 1: Line Input Data (MVAbase =100)

Table 2: Regulating Transformer (RT) Data (MVAbase =100)

Branch	Bus to Bus	Leakage impedance (Z p.u)	Tap setting (a)
RT	2-3	<u>j</u> 0.08	1.03

1

	Voltage	Generation (p.u)		Load demand (p.u)	
Bus #	(p.u)	P _G	Q _G	P _D	Q _D
1	1.03+j0.0			0.0	0.0
2	1.02+j0.0	0.0		0.5	0.3
3	1.0 + j0.0	0.0	0.0	0.3	0.2

Table 3: System Bus Data (MVAbase =100)

Question # 2: (30 Mark)

- a- What are the different causes of shunt faults and their consequences on power system components?
- b- Derive the necessary equations for calculating the fault current and bus voltages for a double-line to ground fault using bus impedance matrix method.
- c- The reactance data for the three-phase power system of Fig.1 on a common base is:
 - G: $X_1=X_2=$ 0.1, $X_0=$ 0.05 and $X_n=$ 0.02 p.u. (Connection Y and earthed through X_n).
 - T: X=0.1p.u (connected Δ /Y solid earthed).

Line: X₁=X₂=0.2, X₀=0.5 p.u

Bus 2 (Infinite Bus): $X_1=X_2=0.15$, $X_0=0.05$ p.u (connection Y isolated).

- (i) Using step by step method to formulate Z_{Bus} for positive, negative and zero sequence networks.
- (ii) With both generator and infinite bus operating at 1.0 p.u voltage on no load, a solid double-line to ground fault occurs at bus 1, calculate:
 - Fault current.
 - Voltage at bus 2 (a, b, c).

2

uestion # 3: (20 Mark)

- a- What are the different types of reactive power compensation and their
 objectives in power system?
- b- Compare briefly between the different types of FACTS devices such as SVC, STATCOM, TCSC, SSSC and UPFC in terms of :

-Load flow. – Power stability. – Voltage quality.

c- Figure 2 shows a bus bar 4 connected to three infinite bus bars 1, 2 and 3. Bus bars 1 and 2 operate at 220 kV while 3 and 4 operate at 132 kV. The transformer reactances are on 200 MVA base. Assume 200 MVA and 220 kV at bus 1 as base. If the voltage at bus 4 falls by 4 kV, find the VAR injection at bus 4 to bring back the bus voltage to its original value.

Fig.2

Question # 4: (20 Mark)

- a- Why does voltage instability occur in power system? How is voltage stability classified?
- b- Discuss briefly the different representation of load models and their significance on voltage stability.
- c- A transmission line with a transfer reactance X has V_s and V_r as the sending and receiving end voltages. The line feeds a static load at receiving end.
 - (i) Derive an expression for voltage stability limit as (dQ_r/dV_r) .
 - (ii) Find the value of (V_r/V_s) at the point of maximum power if the load power factor is:
 - zero lag. unity.

With My Best Wishes

Prof. Dr. Mohammed El-Saíed