Full Mark: 100
Time allowed: 3 Hours

Analysis of Electrical Power Networks

Please Answer The Following Questions:

Question \# 1: (30 Mark)

a- Explain briefly the active power-frequency interaction and reactive power-voltage interaction in power system.
b- Consider a three-bus power system where a shunt capacitor bank is switched at bus 2 to regulate the voltage magnitude of this bus to 1.02 p.u. A regulating transformer (RT) is introduced between buses (2-3) to regulate the voltage of bus 3. Consider RT is a magnitude regulator with off-nominal turns ratio $a=1.03$. The input data of line and RT are given in tables 1 \& 2. The system bus data is given in table 3. Carry out one iteration of load flow solution by Gauss-Seidel iterative method to find the following:
(i) Voltage of buses $2 \& 3$.
(ii) Reactive power generated by a shunt capacitor at bus 2 .
(iii) Active and reactive power generated at bus 1.
(iv) Active and reactive power flow in line 2-3.
(v) Discuss the effect of shunt capacitor at bus 2 and RT on the system operation.

Table 1: Line Input Data (MVAbase =100)

Branch	Bus to Bus	Series impedance (Z p.u)	Ysh/2
Line	$1-2$	$0.005+\mathrm{j} 0.04$	j 0.02

Table 2: Regulating Transformer (RT) Data (MVAbase =100)

Branch	Bus to Bus	Leakage impedance (Z p.u)	Tap setting (a)
RT	$2-3$	$\overline{\mathrm{j} 0.08}$	1.03

Table 3: System Bus Data (MVAbase =100)

	Voltage	Generation (p.u)		Load demand (p.u)	
Bus \#	(p.u)	P_{G}	Q_{G}	P_{D}	Q_{D}
1	$1.03+\mathrm{j} 0.0$	---	---	0.0	0.0
2	$1.02+\mathrm{j} 0.0$	0.0	---	0.5	0.3
3	$1.0+\mathrm{j} 0.0$	0.0	0.0	0.3	0.2

Question \# 2: (30 Mark)

a- What are the different causes of shunt faults and their consequences on power system components?
b- Derive the necessary equations for calculating the fault current and bus voltages for a double-line to ground fault using bus impedance matrix method.
c- The reactance data for the three-phase power system of Fig. 1 on a common base is:
G: $X_{1}=X_{2}=0.1, X_{0}=0.05$ and $X_{n}=0.02$ p.u. (Connection Y and earthed through X_{n}).
$\mathrm{T}: \quad \mathrm{X}=0.1 \mathrm{p} . \mathrm{u}$ (connected Δ / Y solid earthed).
Line: $X_{1}=X_{2}=0.2, X_{0}=0.5 \mathrm{p} . \mathrm{u}$
Bus 2 (Infinite Bus): $\mathrm{X}_{1}=\mathrm{X}_{2}=0.15, \mathrm{X}_{0}=0.05 \mathrm{p} . \mathrm{u}$ (connection Y isolated).
(i) Using step by step method to formulate $Z_{\text {Bus }}$ for positive, negative and zero sequence networks.
(ii) With both generator and infinite bus operating at $1.0 \mathrm{p} . \mathrm{u}$ voltage on no load, a solid double-line to ground fault occurs at bus 1, calculate:

- Fault current.
- Voltage at bus 2 (a, b, c).

Fig. 1

uestion \# 3: (20 Mark)

a- What are the different types of reactive power compensation and their objectives in power system?
b- Compare briefly between the different types of FACTS devices such as SVC, STATCOM, TCSC, SSSC and UPFC in terms of :
-Load flow. - Power stability. - Voltage quality.
c- Figure 2 shows a bus bar 4 connected to three infinite bus bars 1, 2 and 3 . Bus bars 1 and 2 operate at 220 kV while 3 and 4 operate at 132 kV . The transformer reactances are on 200 MVA base. Assume 200 MVA and 220 kV at bus 1 as base. If the voltage at bus 4 falls by 4 kV , find the VAR injection at bus 4 to bring back the bus voltage to its original value.

Fig. 2

Question \# 4: (20 Mark)

a- Why does voltage instability occur in power system? How is voltage stability classified?
b- Discuss briefly the different representation of load models and their significance on voltage stability.
c- A transmission line with a transfer reactance X has V_{s} and V_{r} as the sending and receiving end voltages. The line feeds a static load at receiving end.
(i) Derive an expression for voltage stability limit as $\left(\mathrm{dQ}_{\mathrm{r}} / \mathrm{dV}_{\mathrm{r}}\right)$.
(ii) Find the value of $\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{s}}\right)$ at the point of maximum power if the load power factor is:

- zero lag.
- unity.

