MONITORING OF AFLATOXIN M₁ IN SOME DAIRY PRODUCTS IN LOCAL MARKET OF ALEXANDRIA, EGYPT: ATTEMPTS FOR DETOXIFICATION
Gihan Hosny¹*, M.A. El-Sadany², M.A. Atwa²
¹Institute of Graduate Studies & Research, University of Alexandria, Alexandria, Egypt.
²Regional Center for Food & Feed, Agricultural Research Center, Cairo, Egypt.
* Correspondence author, e-mail address: gihan_hosny@yahoo.com

ABSTRACT
Aflatoxins are carcinogenic and toxic metabolites produced by a variety of molds. Aflatoxin M₁ (AFM₁) accumulates in animal livers and it is excreted in milk, which can be consumed by human. The present study was undertaken aiming at examining the dairy milk products for their any contamination of AFM₁ in Alexandria local market, Egypt, as well as conducting trials for elimination of AFM₁ contamination by using ozone gas and gamma radiation. Levels of AFM₁ contamination (0.001 to 0.06 μg/l) were ranged from in examined milk and dairy products. The maximum levels were contamination in raw and pasteurized milk while minimum levels were detected in infant milk. The result indicated that yoghurt processing decreases or even eliminates the presence of AFM₁, which may be attributed to some factors such as low pH, formation of organic acids or other fermented by-products. Treatment of contaminated liquid milk by ozone gas resulted in a decrease or even loss in the contents of AFM₁. However, ozone treatment for 10 minutes was the effective interval for complete elimination of contamination, but resulted in coagulates milk protein and change the odor. Thus, it can be stated that ozone gas was a non-convenient method for complete detoxification of milk and dairy products. Treatment by gamma radiation (with a dose of 10 kGy) was found to be more suitable as a detoxification procedure than ozone treatment as there were no change in properties of milk upon treatment.

Keywords: Aflatoxin M₁, Detoxification, Milk, Milk product.

INTRODUCTION
Aflatoxins are toxic metabolites produced by a variety of molds such as Aspergillus flavus and Aspergillus parasiticus (Egmond, 1989). Crops may be contaminated by one or more of the four following sub-types of aflatoxin: B₁, B₂, G₁ and G₂. Aflatoxins B₁ is the most toxic and frequently detected form, Aflatoxins have been implicated in human health disorders including hepatocellular carcinoma, aflatoxicosis, Reye’s syndrome and chronic hepatitis. Animals are exposed to aflatoxins by consumption of foods that are contaminated by aflatoxin-producing fungal strains during growth, harvest or storage. When cows are fed with contaminated food (Schlatter, 1990, Whitlow & Hagler, 2005 and Ajoy & Priyanka, 2010). Aflatoxins can occur in approximately 20 related fungal metabolites and contaminate a wide range of important commodities, including cereals, nuts, spices, figs dried...

Aflatoxin B₁ (AFB₁) is converted by hydroxylation to aflatoxin M₁ (AFM₁) which accumulates in animal livers, and is excreted in urine and milk (Whitlow & Hagler, 2005). AFM₁, which is subsequently secreted in the milk of lactating cows is quite stable to normal milk processing methods such as pasteurization and may persist into final products for human consumption. The amount of toxins excreted as AFM₁, as a percentage of AFB₁ in feed, is usually 1-3%, but values as high as 6% have been reported (Jouany & Diaz, 2005). Once AFB₁ is absorbed into the cow’s body, the clearance of AFM₁ in milk may take 5 to 7 days depending on the amount and duration of the AFB₁ consumption (Whitlow & Hagler, 2005).

The Codex Committee on Food Additives and Contaminants reported the carcinogenic potency of AFM₁ in sensitive species to be one order of magnitude less than that of AFB₁ (Lafont, et al., 1989). AFM₁ may occur in animal organs and tissues, e.g. kidneys, and in animal products, e.g. milk, and other dairy products. Sources of aflatoxin contamination in animal feedstuffs may vary geographically. Many feeds may contain aflatoxins but the most important sources are meals of groundnut, cottonseed and maize. Contamination of agricultural crops with aflatoxins is a worldwide problem that occurs where both climatic and technological conditions stimulate aflatoxin formation (SCF, 1994 and Galvano et al., 1996).

The Scientific Committee for Food (SCF) concluded that there is sufficient evidence that AFM₁ is a genotoxic carcinogen; its carcinogenic potency is estimated to be approximately 10 times lower than AFB₁. However, because the intakes of milk and milk products by humans are of considerable amounts, particularly among infants and young children, the risks from AFM₁ exposure need careful consideration (FAO, 1997). Global regulations of AFM₁ contamination in milk are varied from one country to the other. It should be less than 0.05 µg/kg in EU, Switzerland, Austria, France, China, Turkey, Japan, Mexico, Thailand, Argentina, and Honduras; less than 0.50 µg/kg in US, Bulgaria; less than 1.0 µg/kg and 0.0 µg/kg in Egypt, Rumania (FAO, 1997).

Because of the serious health hazards that may be associated with exposure to AFM₁, the present study was undertaken aiming at determining the contamination levels of AFM₁ in milk samples and dairy products available for sale in Alexandria, Egypt; assessing the effect of milk processing on AFM₁ content e.g.; manufacturing of soft white cheese, hard white cheese and yoghurt; conducting trials to eliminate AFM₁ contamination in order to reduce the accompanied risk; e.g. using ozone (O₃) gas and gamma (γ) radiation; and finally drawing a conclusive recommendation for healthy use.
MATERIALS AND METHODS

Chemicals. All reagents, chemicals and solvents were of analytical HPLC grade, provided via Carlo Erba (Milan, Italy). Deionized water was purified by MilliQ system (Waters, Milford, MA, USA). The immunoaffinity columns AflaM test were purchased from VICAM (USA). The AFM1 standard used was obtained from Sigma-Aldrich (Saint Louis, MO, USA, Product Code A-6428, 50 mg) as purified crystalline AFM1.

Monitoring of AFM1 in milk and dairy products. A total of 210 samples (raw milk, pasteurized milk, UHT milk, concentrated milk, infant’s milk, milk powderd, crude milk, yoghurt, kareish cheese, soft white cheese, hard white cheese, processed cheese, ice cream, labneh, butter and cheese whey) were analyzed for AFM1. All samples were obtained from different supermarkets in Alexandria city, North Egypt during 2012-2013, and transported to the laboratory in an ice packed box. The samples were stored at -20 °C in deep-freezer until being analyzed. AFM1 was determined through a combined cleanup process with immunoaffinity columns and HPLC (Agilent 1200 series, USA) determination (AOAC Official Method 2000 and Manetta et al, 2005).

Effect of processing methods on AFM1 content. Manufacture of soft and hard white cheese with different concentration of AFM1 was carried out using the traditional method of soft white cheese manufacture according to El-Gawad, 2009 and Abd El-Salam et al., 2011. Manufacture of yoghurt with different concentration of AFM1 was carried out using the traditional method of yoghurt manufacturing (Baraka et al., 2011).

Detoxification of milk samples.

1. Effect of using Ozone (O3) gas on AFM1 content. Ozonation of samples was carried out similarly to application of ozonation in food staffs according to (Proctor et al., 2004 and Inan et al, 2007), using O3 generator (1-FM-300 Mini generator, USA). Ozone was delivered on site upon demand, at the concentration of 200 mg per hour on ambient air.

2. Effect of (γ) radiation treatment on AFM1. Radiation of samples was carried out similar to radiation of other food staffs according to (Iqbal et al., 2012) using radiation unit (3500 Norcontrol AS, Vinderen, Oslo 3, Norway).

3. Detoxification evaluation/Screening for AFM1. Milk samples were further checked after detoxification procedures for the presence of any content of AFM1, according to (Kokkonen & Jestoi, 2009) using GC/MS (Agilent GC/MS system 7000 Series Triple Quadrupole, USA).

4. Assessment of milk properties. Milk properties were examined after detoxification procedures. All samples were dried at -50°C, using freeze-dryer (Labconco Freeze Dryer; Free Zone 6 Liter Benchtop Freeze Dry System with Stopping Tray Dryer). Nutritional factors were analyzed as follows: calories according to United States Department of (Agriculture, 1975); fats according (AOAC, 2005); proteins according to (Barbano et al, 1991); carbohydrates according to (AOAC, 1998); calcium and phosphor.
according to AOAC, 2005; and vitamin B1 and vitamin B2 according to (AOAC, 2001). The resulted data were investigated for any change in the milk properties.

RESULTS AND DISCUSSION

Occurrence of AFM₁ in samples of milk and dairy products is illustrated in Table 1. The maximum detected level was 0.06 µg/l in pasteurized milk; 0.051 µg/l in powdered milk and 0.041 µg/kg in processed cheese. The mean detection levels varied from 0.006 µg/l in infant milk to 0.056 µg/l in pasteurized milk. AFM₁ contamination was detected in percentages of 37.5, 33.3, 33.3, 16.6, 37.3, 54.5, 28.5, 26.6, 29.4, 44.4, 25, 33.3, 42.1, 30.7, 25, and 23.08, in raw milk, crude milk, powdered milk, infant milk, pasteurized milk, UHT milk, concentrated milk, yoghurt, processed cheese, soft cheese, hard cheese, kareish cheese, ice cream, labneh, butter and cheese whey, respectively.

Table 1 : Occurrence of AFM₁ in milk and dairy products in samples collected from the local markets in Alexandria.

<table>
<thead>
<tr>
<th>Dairy products</th>
<th>Samples tested: n</th>
<th>Positive samples, n (%)</th>
<th>Range (µg/l or µg/Kg)</th>
<th>Mean ±SE* (µg/l or µg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw milk</td>
<td>16</td>
<td>6 (37.5)</td>
<td>0.02 - 0.06</td>
<td>0.04 ±0.01</td>
</tr>
<tr>
<td>Crude milk</td>
<td>6</td>
<td>2 (33.3)</td>
<td>0.019 - 0.017</td>
<td>0.018±0.001</td>
</tr>
<tr>
<td>Powdered milk</td>
<td>9</td>
<td>3 (33.3)</td>
<td>0.03 - 0.05</td>
<td>0.043±0.0068</td>
</tr>
<tr>
<td>Infant milk</td>
<td>12</td>
<td>2 (16.6)</td>
<td>0.001 - 0.011</td>
<td>0.006±0.005</td>
</tr>
<tr>
<td>Pasteurized milk</td>
<td>8</td>
<td>3 (37.3)</td>
<td>0.05 - 0.06</td>
<td>0.056±0.004</td>
</tr>
<tr>
<td>UHT milk</td>
<td>11</td>
<td>6 (54.5)</td>
<td>0.01 - 0.027</td>
<td>0.018±0.003</td>
</tr>
<tr>
<td>Concentrated milk</td>
<td>7</td>
<td>2 (28.5)</td>
<td>0.013 - 0.015</td>
<td>0.014±0.001</td>
</tr>
<tr>
<td>Yoghurt</td>
<td>15</td>
<td>4 (26.6)</td>
<td>0.01 - 0.02</td>
<td>0.015±0.003</td>
</tr>
<tr>
<td>Processed cheese</td>
<td>17</td>
<td>5 (29.4)</td>
<td>0.021 - 0.041</td>
<td>0.027±0.004</td>
</tr>
<tr>
<td>Soft cheese</td>
<td>27</td>
<td>12 (44.4)</td>
<td>0.001 - 0.04</td>
<td>0.025±0.004</td>
</tr>
<tr>
<td>Hard cheese</td>
<td>16</td>
<td>4 (25)</td>
<td>0.011 - 0.032</td>
<td>0.021±0.005</td>
</tr>
<tr>
<td>Kareish cheese</td>
<td>9</td>
<td>3 (33.3)</td>
<td>0.01 - 0.04</td>
<td>0.027±0.009</td>
</tr>
<tr>
<td>Ice cream</td>
<td>19</td>
<td>8 (42.11)</td>
<td>0.012 - 0.031</td>
<td>0.021±0.002</td>
</tr>
<tr>
<td>Labneh</td>
<td>13</td>
<td>4 (30.7)</td>
<td>0.012 - 0.029</td>
<td>0.021±0.002</td>
</tr>
<tr>
<td>Butter</td>
<td>12</td>
<td>3 (25)</td>
<td>0.013 - 0.027</td>
<td>0.019±0.005</td>
</tr>
<tr>
<td>Whey</td>
<td>13</td>
<td>3 (23.08)</td>
<td>0.021 - 0.03</td>
<td>0.025±0.005</td>
</tr>
</tbody>
</table>

*SE; Standard Error, figures are presented in the form of means ± SE.

The detected levels of AFM₁ in milk and dairy products were compared to the exceeding regulation of US, EU and Egypt (Table 2). All AFM₁ levels detected in raw milk, pasteurized milk, powdered milk, UHT milk, infant milk, crude milk, concentrated milk, yoghurt, processed cheese, soft cheese, hard cheese, kareish cheese, whey, ice cream, labneh and butter were not exceeding the US regulations (0.5 µg/l or µg/Kg), while some samples of raw, pasteurized, and powdered milk were exceeding the EU regulation (0.05 µg/l or µg/Kg) and Egyptian regulations (0.05 µg/l or µg/Kg), with percentage 3%, 2% and 3%, respectively (Table 2). (Abo-zeid et al., 1996) monitored 30 samples of hard
cheese and 28 samples of skim milk-soft cheese for mycotoxins’ contamination and results revealed the presence of AFM\(_1\), AFB\(_2\), and AFG\(_2\) at percentages of 3.3, 17.9, and 20, respectively. (Balata and Bahout, 1996), reported that in 24 samples of raw milk collected from camels, AFM\(_1\) was detected in 25% of camel’s milk samples, with a mean value of 0.55 µg/L. A study was done by (El-Seadawy et al., 2000) on 200 samples of raw milk products (raw milk, Domiati cheese, processed cheese and yoghurt; 50 samples each) collected from supermarkets to study its bacterial and fungal contamination. AFM\(_1\) was detected in 36 samples (18%) with a level ranged from 10 to 820 ng/kg. Domiati cheese had a relatively higher concentration of AFM\(_1\). In Ismailia, Egypt, (Motawee et al., 2009), detected AFM\(_1\) in milk samples collected from camel, goat, cow and buffalo species, in 80%, 74%, 66% and 52% of samples, respectively. Levels were below the EU maximum levels of AFM\(_1\), less than 50ng/L. In other study in Alexandria, (Amer and Ibrahim, 2010), analyzed 50 raw milk samples and 150 soft, hard and processed cheese samples (50 of each) and reported AFM\(_1\) contamination in 19 samples of raw cow milk, 20 samples of soft cheese, 19 samples of hard cheese and 11 samples of processed cheese. (El Sayed et al., 2011) studied the presence of AFM\(_1\) in 70 samples of the Egyptian style white soft cheese and results revealed that 4 out of 15 Kariesh, 7 out of 30 Domiati, 3 out of 15 Tallaga and 2 out of 10 Feta cheese samples were positive for the presence of AFM\(_1\). The highest and lowest aflatoxin concentrations were 0.4 and 0.1 µg/kg of the cheese. In Cairo, (Mohsen et al., 2011) reported the presence of AFM\(_1\) in 54.6 % of 141 tested milk product samples. The range of AFM\(_1\) was 3.41-137 ng/l for pasteurized milk, 6.28-67.4 ng/l for powdered milk, 9.70-89.3 ng/l for yogurt, and 7.14-122 ng/kg for Feta cheese.

Table (2): Comparing the detected levels of AFM\(_1\) (µg/l) in samples of milk and dairy products to levels of the existing regulations.

<table>
<thead>
<tr>
<th>Dairy product</th>
<th>Positive samples</th>
<th>Exceeding Egyptian regulations (0.05 µg/l or µg/Kg)</th>
<th>Exceeding EU regulations (0.05 µg/l or µg/Kg)</th>
<th>Exceeding US regulations (0.50 µg/l or µg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>Range</td>
<td>N (%)</td>
<td>Range</td>
</tr>
<tr>
<td>Raw milk</td>
<td>6</td>
<td>3 (18.8)</td>
<td>0.05 - 0.06</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Crude milk</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Powdered milk</td>
<td>3</td>
<td>2 (22.2)</td>
<td>0.05</td>
<td>2 (22.2)</td>
</tr>
<tr>
<td>Infant milk</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pasteurized milk</td>
<td>3</td>
<td>3 (100)</td>
<td>0.05 - 0.06</td>
<td>3 (100)</td>
</tr>
<tr>
<td>UHT milk</td>
<td>6</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Concentrated milk</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Yoghurt</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Processed cheese</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Soft cheese</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hard cheese</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kareish cheese</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ice cream</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Labneh</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Butter</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Whey</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Effect of manufacturing on AFM₁ content.

1. Effect of manufacturing of soft white cheese on AFM₁ content.

Effect of processing methods on AFM₁ content in soft white cheese is shown in Table 3. The mean concentration values of AFM₁ in whey and cheese were 0.23 µg/l & 0.92 µg/Kg, 0.11 µg/l & 0.45 µg/Kg and 0.021 µg/l & 0.088 µg/Kg in contaminated milk samples with three concentrations of 0.5, 0.25 and 0.05 µg/l respectively. The mean concentration of toxin in cheese was 4.1 fold more than that in whey and 1.77 fold more than that in milk. The mean concentration of toxin in whey decreased than that of milk. A statistical significant (p<0.05) difference was shown between the different concentrations of AFM₁ (0.5, 0.25 and 0.05 µg/l) after soft white cheese manufacturing. AFM₁ is associated with the protein fraction of milk, and hence it is present in cheese approximately 3–5 fold over that in milk. Studies on the fate of AFM₁ in cheese whey processing found that although the AFM₁ has a low molecular weight close to lactose, but does not permeate through the filters as lactose in UHT processing and exhibits a preference for the retentiveness (Mendonca & Vaenancio 2005). (Govaris et al., 2001), reported that the affinity of AFM₁ for caseins is higher when compared to its affinity for serum proteins. Some previous studies exhibit contradictory data on the behavior of AFM₁ during cheese making, found that AFM₁ distribution during cheese making has a reduction of about 60% compared to the milk (Lopez et al., 2001). Our results are in agreement with that observed by (Dosako et al., 1980) in other kind of cheese. They reported 3.9-4.4 folds increasing of AFM₁ concentration in Telemes cheese compared with the cheese milk, using HPLC system for determination and quantification of AFM₁. They attributed their results to the reason of AFM₁ being mainly soluble in the aqueous phase of milk and adsorbed to casein particles.

In another study on the distribution of AFM₁ in Camembert cheese processing, the results showed that AFM₁ concentration in cheese was higher than that in cheese milk (Fremy et al., 1990). A study on the contamination of Ewe’s cheese milk, curd and cheese with AFM₁ in Feta cheese processing showed that the level of AFM₁ in curd was higher than that of milk and cheese (Grigoradou et al., 2005). In another study, the mean concentrations of toxin in curd and cheese were reported to be 3.12 and 3.65-fold more than that in whey and 1.68 and 1.80 fold more than that in cheese milk, respectively (Kamkar, 2005).

2. Effect of manufacturing of hard white cheese on AFM₁ content.

Effect of manufacturing on concentrations of AFM₁ in hard white cheese is shown in Table 4. By using contaminated milk with three concentrations 0.5, 0.25 and 0.05 µg/l, the mean concentration of toxin in soft cheese and hard cheese was 1.63 and 2.4 fold more than that in cheese milk, respectively. Statistical significant differences between concentrations of AFM₁ in cheese milk and soft and hard cheese after manufacturing were detected at P<0.05.
Table 3: Contents of AFM$_1$ in cheese and whey samples after soft cheese manufacturing.

<table>
<thead>
<tr>
<th>Liquid milk with conc. of AFM$_1$ (µg/l or µg/Kg)</th>
<th>In cheese*</th>
<th>In whey*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (µg/Kg)</td>
<td>Mean ±SE (µg/Kg)</td>
<td>Conc. (µg/l) Increase</td>
</tr>
<tr>
<td>(0.5)</td>
<td>0.99-0.87</td>
<td>0.92±0.0205</td>
</tr>
<tr>
<td>(0.25)</td>
<td>0.49-0.41</td>
<td>0.45±0.0141</td>
</tr>
<tr>
<td>(0.05)</td>
<td>0.092-0.082</td>
<td>0.088±0.0015</td>
</tr>
</tbody>
</table>

* Contents of AFM$_1$ after processing were obtained using 5 replicates, SE; Standard Error, figures are presented in the form of means ± SE.

Our results are in agreement with those observed by (Yousef & Marth, 1989, and JECFA, 2001) who reported that AFM$_1$ seems to be predominantly associated with casein, so that cheese curd contains a higher concentration than whey. Association of AFM$_1$ with casein can be expressed as an enrichment factor (EF) for AFM$_1$ during cheese-making. Studies showed that the concentration of AFM$_1$ is about 3 folds higher in many soft cheeses and about 5 folds higher in hard cheeses than in milk. Some studies demonstrated that cheese ripening and proteolysis of casein increase the recovery of AFM$_1$ from naturally contaminated milk; proteolysis may affect hydrophobic regions on casein associated molecules releasing of AFM$_1$ (Yousef & Marth, 1989, and JECFA, 2001).

3. Effect of manufacturing of yoghurt on AFM$_1$ content.

Effect of manufacturing of yoghurt on AFM$_1$ content is shown in Table 5. Yoghurt was manufactured by using milk contaminated with AFM$_1$ in three concentrations: 0.5, 0.25 and 0.05 µg/l. The mean concentrations of toxin in yoghurt, for the three concentrations respectively, were decreased with percentage of 6, 18, 20, 26%, 16, 20, 24, 28 % and 20, 28, 64, 68%. at zero time (fresh yoghurt), and after one, two, and three days, respectively. The decreases in AFM$_1$ contents were associated with gradual decreases in pH values. Statistical significant differences $p< 0.05$. between decreases in concentrations of AFM1 were detected after yoghurt manufacturing. The noted decrease in content with AFM$_1$ with yoghurt manufacturing is in agreement with (Govaris $et al$. 2002). Other studies reported no influence on AFM$_1$ content upon manufacturing of yoghurt or storage for 7 days at 7 °C (1993, El Deeb $et al$. 1992 and Bianco $et al$.). In contrast, (Bakirci, 2001, and Munksgaard $et al$. 1987), detected variable increases of AFM$_1$ content in yogurt related to the milk contamination.
<table>
<thead>
<tr>
<th>Liquid milk with</th>
<th>Range (µg/Kg)</th>
<th>Mean ±SE (µg/Kg)</th>
<th>Conc. (µg/l) Increase</th>
<th>Range (Min-max) (µg/Kg)</th>
<th>Mean ±SE (µg/Kg)</th>
<th>Conc. (µg/l) Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. (µg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.86-0.82</td>
<td>0.84±0.0071</td>
<td>1.68</td>
<td>1.18-1.23</td>
<td>1.21±0.0105</td>
<td>2.42</td>
</tr>
<tr>
<td>0.25</td>
<td>0.39-0.43</td>
<td>0.41±0.0071</td>
<td>1.64</td>
<td>0.57-0.62</td>
<td>0.59±0.0084</td>
<td>2.36</td>
</tr>
<tr>
<td>0.05</td>
<td>0.077-0.081</td>
<td>0.079±0.0007</td>
<td>1.58</td>
<td>0.111-0.116</td>
<td>0.114±0.0008</td>
<td>2.28</td>
</tr>
</tbody>
</table>

* Contents of AFM\textsubscript{1} after processing were obtained using 5 replicates, SE; Standard Error, figures are presented in the form of means ± SE.

Table 5: Concentrations of AFM\textsubscript{1} (µg/l) and pH change after manufacturing of yoghurt at different intervals.

* Contents of AFM\textsubscript{1} after processing with means were obtained using 5 replicates; SD; Standard Deviation; SE, Standard Error.
(Govaris et al., 2002) reported that AFM$_1$ levels in all yoghurt samples showed a significant decrease from those initially present in milk. This decrease in AFM$_1$ was attributed to factors such as low pH, formation of organic acids or other fermentation by-products, or even to the proteins such as the caseins leading to formation of yoghurt coagulum. The change in casein structure during yoghurt production may affect the association of AFM$_1$ with this protein. (Rasic et al., 1991) reported that the adsorption or occlusion of the toxin in the precipitate, causing AxFM$_1$ stability over storage of yogurt, is due to decrease in pH. (Govaris et al., 2002) reported a high reduction (up to 97%) of AFM$_1$ in yogurt and acidified milk. For yogurt during refrigerated storage, it was reported that AFM$_1$ was rather more stable in the yoghurts with pH 4.6 than with pH 4.0. The percentage of loss of the initial amount of AFM$_1$ in milk was estimated to be 13 and 22% by the end of fermentation, and 16 and 34% by the end of storage for yoghurts with pH of 4.6 and 4.0, respectively.

Effect of some-detoxification methods on AFM$_1$ content
1. Effect of using ozone (O$_3$) gas on AFM$_1$ content.

Effect of detoxification using ozone gas on AFM$_1$ content is shown in Figures 1&2. The ozone gas was applied for several chosen time intervals of 1, 2, 4, 6, 8, and 10 minutes on AFM$_1$-contaminated milk with two added concentrations of AFM$_1$ (0.5 and 0.25 µg/l). Ozone treatment resulted in decrease or loss of AFM$_1$ content depending on the application time. The maximum effect was obtained with application of ozone for 10 minutes.

The percentages of minimization in the AFM$_1$ contents of 0.5 and 0.25 µg/l in milk samples were as follows: 24-23.2%; 35.2-34.4%; 48.8-46.4%; 66.4-64.8%; 82.4-81.2%; and 100-100%, corresponding to ozone treatment intervals of 1, 2, 4, 6, 8, and 10 min, respectively. After O$_3$ detoxification procedures, milk samples were further checked for screening and examining the presence of any content of AFM$_1$ using GC/MS (Figures 5-7). Nutritional factors and milk properties were also evaluated.

A statistical significant difference was found between the initial concentrations of AFM$_1$ and concentrations after treatment with ozone gas, showing a maximum effect at application of 10 minutes, at $P<0.05$. Although, contents of AFM$_1$ were decreased or lost by ozone treatment, it was found that application of 10 minutes resulted in curd milk protein and change in its odor. The evidence of changing of milk properties with ozone application for 10 minutes, can state the conclusion that ozone gas is not suitable for milk detoxification.

Our results showed that treatment with ozone had a positive effect on elimination of AFM$_1$ but had a negative effect on properties of milk. Ozone, as a gas naturally found in the earth’s atmosphere, has been used as a disinfectant agent for over hundred years. Ozone was first used to disinfect drinking water in the 19th century and was approved in 1997, for use as a
disinfectant for food without leaving chemical residues. Ozone was reported to be an effective treatment for increasing shelf-life and decreasing fungal deterioration in the post harvesting treatment of fresh fruit such as table grapes (Sarig et al., 1996).

Figure 1: Effect of treatment of milk with ozone gas on AFM$_1$ contents using a concentration of 0.5 µg/l.

Figure 2: Effect of treatment of milk with ozone gas on AFM$_1$ contents using a concentration of 0.25 µg/l.
2. Effect of treatment with gamma (γ) radiation on AFM1,

Effect of detoxification using gamma (γ) radiation on AFM1 content is shown in Figures 3&4. The gamma (γ) radiation was applied in six doses of 0.5, 1.0, 1.5, 3.0, 5.0, and 10.0 kGy on AFM1-contaminated milk with two added concentrations of 0.5 and 0.25 µg/l. Gamma (γ) radiation treatment resulted in decrease or loss of AFM1 content depending on its applied dose. The maximum effect was obtained with application of gamma (γ) radiation at 10 kGy. The percentages of minimization in the AFM1 contents of 0.5, 0.25 and 0.0 µg/l in milk samples were as follows: 3.2-5.6%; 7.6-9.6%; 12.4-17.6%; 26.4-28.8%; 50.8-54.40%; and 100-100% corresponding to exposure doses of 0.5, 1.0, 1.5, 3.0, 5.0, and 10.0 kGy, respectively. After gamma radiation detoxification procedures, milk samples were further checked for screening and examining the presence of any content of AFM1 using GC/MS (Figures 5, 6 and 8). Nutritional factors and milk properties were also evaluated.

A statistical significant p< 0.05 difference was found between the initial concentrations of AFM1 and concentrations after treatment with the six doses of gamma radiation, showing a maximum effect with 10.0 kGy.

Contrary to ozone application, application of gamma (γ) radiation treatment resulted in a decrease or loss in contents of AFM1 with no evidence of change in milk properties at any of the applied doses.

Our results are in agreement with those observed by several studies, as reported by Samarajeewa et al., 1990 who indicated obvious elimination of aflatoxins, by almost 100%, in peanut meal by (γ) radiation. Also, Iqbal et al. (2012), reported 6% reduction of aflatoxin in hotpeppers after exposure to (γ) irradiation. Moreover, Farag et al., 1996 recorded significant reduction of the pure total aflatoxin and aflatoxin in grains after exposure to microwave irradiations. The effect of irradiation on the aflatoxin content of food and feed was previously shown by Aziz & Moussa, 2002, who reported that the degradation of AFB1, observed in plum stored at refrigeration and irradiated at 3.5 kGy, decreased from 380-500 µg/ kg to 20 µg/ kg. The authors treated fruits with different gamma radiation doses and observed a progressive decrease in fungal count and mycotoxin levels (penicillic acid, patulin, cyclopiazonic acid, citrinin, ochratoxin-A and aflatoxin) at doses of 1.5 and 3.5 kGy. The authors reported also that no mycotoxins were detected in fruits treated with 5 kGy (Aziz & Moussa, 2002).
Figure 3: Effect of treatment of milk with gamma (γ) radiation on AFM$_1$ concentration; 0.5µg/l.

Figure 4: Effect of treatment of milk with gamma (γ) radiation on AFM$_1$ concentration; 0.25µg/l.
Figure 5: GC/MS for non-contaminated liquid milk sample, as a control.
Integration peak list of non-contaminated liquid milk sample.

Figure 6: GC/MS for contaminated liquid milk sample, as a control.
Integration peak list of contaminated liquid milk
Figure 7: GC/MS for contaminated liquid milk with AFM₁, exposed to ozone gas (O₃) in one dose of 200 mg/hr. for 10 minutes. Integration peak list of contaminated liquid milk, exposed to ozone gas (O₃).

Figure 8: GC/MS for contaminated liquid milk sample, exposed to gamma (γ) radiation at high dose of 10 kGy. Integration peak list of contaminated liquid milk, exposed to gamma (γ) radiation.
3. Assessment of milk properties after ozone or (γ) radiation treatment.

Milk is a very complex food with over 100,000 different molecular species found. After detoxification treatment, milk properties and nutritional factors of the treated milk samples were examined and compared to those of non-treated, non-contaminated liquid milk samples. Milk properties were examined physically by odor and curd proteins. Nutritional factors such as; calories, fat, protein, carbohydrate, calcium, phosphor, vitamin B₁, vitamin B₂ were evaluated. Table 6 shows the nutritional factors of 100 ml milk samples after detoxification treatments which were compared to nutritional factors of non-treated and non-contaminated liquid milk samples. The contaminated samples, exposed to ozone gas (O₃) at one dose of 200 mg/hr for 10 minutes were tested for milk properties and mean nutritional factor. Exposure to ozone treatment resulted in curd milk protein and change in its odor, which gives evidence of a change in physical properties of milk and its mean nutritional factor. It was shown that the measured values of calories, fat, protein, carbohydrate, calcium, phosphor, vitamin B₁, and vitamin B₂ were 27.14kcal, 0.158gm, 2.042gm, 3.92gm, 109.08mg, 87.04mg, 0.021mg and 0.131mg, respectively.

The contaminated liquid milk samples exposed to gamma (γ) radiation at high dose of 10 kGy were also tested for milk properties and mean nutritional factor. Exposure to radiation treatment resulted in no change in milk's properties or nutritional factors. The mean measured values of calories, fat, protein, carbohydrate, calcium, phosphor, vitamin B₁, and vitamins B₂ were 31.02kcal, 0.20gm, 2.79gm, 4.52gm, 118.08mg, 92.96mg, 0.0406mg and 0.1738mg, respectively, and were almost similar to those values of non-treated, non-contaminated milk samples.

However, GC/MS examinations for milk samples treated with ozone gas or gamma radiation showed spectra identifying deletion of peaks of AFM₁, of a mass of 328kd, but treatments resulted in three other unknown peaks of known masses of 313, 297 and 257kd. These raises a question of what are these components; are these components safe to human health or not?. It seems that AFM₁ may be divided into three other unidentified compounds during detoxification treatments of milk. A future study, therefore, is needed to identify these compounds, verify their toxicity and their impact on human health.
Table 6: Nutritional factor for 100 ml milk samples after detoxification treatments compared to non-treated, non-contaminated liquid milk samples

* Contents of AFM after treatments were obtained using 5 replicates SD; Standard Deviation; SE, Standard Error.
In conclusion, the results of the underlying study indicated that AFM₁ could be found in dairy products manufactured from contaminated milk. Avoiding contamination seems to be the only practical way to ensure the safety of milk and milk products for human consumption. Despite of low incidence of AFM₁ in milk and other dairy products compared to other regions worldwide, more emphasis should be given to the determination of AFM₁ in milk and dairy products. Manufacturing of cheese from AFM₁-contaminated milk showed variable AFM₁ concentrations in soft and hard cheese higher than those in cheese milk, which may be attributed to association of AFM₁ with casein. Manufacturing of yoghurt resulted in a decrease in the contents of AFM₁, which may be attributed to factors such as low pH, formation of organic acids or other fermentation by-products. Treatment of contaminated milk by ozone gas resulted in a decrease or complete elimination of AFM₁ in milk. It was found that 10 minutes of ozone treatment resulted in curd milk protein and change in its odor and properties; indicating that increasing treatment interval is not convenient for detoxification of milk or dairy products. However, treatment by gamma radiation at a dose of 10 kGy was found to be more suitable as a detoxification procedure than ozone treatment as there was no change in milk properties upon treatment.

Therefore, it is recommended in order to ensure safety consumption of milk and milk product daily intake, aflatoxin B₁ contaminated feeding for dairy cattle should be avoided. This seems to be the most practical way. Attention must be taken to consumption of guaranteed source to avoid severe contaminated with aflatoxin M₁ in milk and milk products. Using modern or new technologies for detoxification of milk should be further studied.

REFERENCES

AOAC INTERNATIONAL. (2005) Official Methods of Analysis of AOAC. 18th Ed., AOAC INTERNATIONAL, Gaithersburg, MD, USA.

Gihan Hosny et al.

نتائج عملية تصنيع الجين الإبيض المدمج التي ان تركيز الألافتكسين M1 في الجين الطبيعي M1. الينج الجاف أضيف تركيز في النبات المصاب منه الجين وهذا قد يرجع إلى ارتباط الألافتكسين مع (الكازين) بروتين النبات (اللافتكسين M1، قابل للذوبان بشكل رئيسي في المرحلة المائية من اللين أوالأحماض على سطح جزيئات النبات).

أشارت نتائج عملية تصنيع النبات إلى العلاقة بين تركيز الألافتكسين M1 ونسبة الانخفاض الذي يتطلب. هذه الألفاكتوسين م، وهذا الانخفاض قد يرجع إلى عدد عوامل مثل انخفاض الرقم الهيدروجيني، ونسبة الأحماض العضوية أو التخمير وغيرها من العوامل. أظهرت نتائج المعايير المتضمنة للتنقيح من الألافتكسين M1 تم تغذية بتركيزين من الألافتكسين M1، وهي (0.01 و0.001 ميكرون/لتر) التي كانت جرعة التعرض 200 ملجم / ساعة. انخفاض متوسط التركيز للألافتكسين M1 احتفظ بنسبة 32.24 %، 35.5 %، 34.5 %، 31.4 %، 28.8%، 81 %، 80 % و 100 % لسنة 2011، 2010، 2009، 2008، 2007، 2006، 2005، 2004، 2003، 2002.

أظهرت نتائج المعايير المتضمنة للتنقيح من الألافتكسين M1 باستخدام أشعة جاما (γ)، وذلك باستخدام متوسط نوعية تركيز الألافتكسين M1، وهي (0.01 و2.6 ميكرون/لتر) والتي تم تغذية بمتوسط متوسط التركيز للألافتكسين M1 احتفظ بنسبة 32.24 %، 35.5 %، 34.5 %، 31.4 %، 28.8%، 81 %، 80 % و 100 % لسنة 2011، 2010، 2009، 2008، 2007، 2006، 2005، 2004، 2003، 2002.

قامت بتحكم البحث

كلية الزراعة - جامعة المنصورة

أ.د / عبد الحليم محمد عبد الحميد

المركز القومي للبحوث

أ.د / هيثم حمدي عباس