

Answer all the following questions:
1-1) What are the elements and kinds of mechanisms? ,
1-2) The kinematic constraints of a four-bar mechanism are: $2 \cos \theta_{1}+4 \cos \theta_{2}-3 \cos \theta_{3}=3.5$, $2 \sin \theta_{1}+4 \sin \theta_{2}-3 \sin \theta_{3}=1$. If the initial angular displacement of the crank is $\theta_{1}^{\circ}=2.36 \mathrm{rad}$, and its constant angular velocity is $2 \pi \mathrm{rad} / \mathrm{sec}$ and $\theta_{2}=0.57 \mathrm{rad}$. Determine the initial angular velocity and the initial angular acceleration of each body of the mechanism.

2-1) Classify the kinematic pairs and illustrate six examples.
2-2) The curve of a cam follower is descritized and a porsion of the recorded data is listed as shown in the figure.

Point	$\theta(\mathrm{rad})$	$s(\mathrm{~cm})$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
A	0.2	3.75
B	0.3	3.57
C	0.4	3.35
D	0.5	3.10
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot

A spline function algorithm finds three cubic polynomials for three segments of the curve:
$\mathrm{s}_{1}=-6.538 \theta^{3}+3.230 \theta^{2}-2.173 \theta+4.108 \mathrm{~cm}$
$\mathrm{s}_{2}=6.538 \theta^{3}-8.538 \theta^{2}+1.358 \theta+3.755 \mathrm{~cm}$
$\mathrm{s}_{3}=-9.515 \theta^{3}+10.846 \theta^{2}-6.396 \theta+4.788 \mathrm{~cm}$
Show that s_{1} and s_{2} and their first derivatives are contiouous at point B . Determine the slope of tangent $(\mathrm{d} \eta / \mathrm{d} \xi)$ at the point P ahere $\theta^{\mathrm{P}}=0.26 \mathrm{rad}$

3-1) What are the four basic types of motion in solid mechanics, illustrate some examples. 3-2) Consider the shown system of two moving bodies connected by a revolute joint. The external forces acting on the system are gravity, a constant force of 10 N acting on body i in the negative x dierction, and a constant force of 10 N acting on body j in the positive x direction. The vectors of coordinates, velocities, and accelerations are:

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{i}}=[1.58,1.59,0.6]^{\mathrm{T}} \text {, } \\
& \mathbf{q}_{\mathbf{j}}=[3.4,1.96,0.2]^{\mathrm{T}} \text {, } \\
& \dot{\mathbf{q}}_{i}=[1.1,0.2,-0.02]^{\mathrm{T}} \text {, } \\
& \dot{\mathbf{q}}_{\mathrm{j}}=[1.14,0.24,0.03]^{\mathrm{T}},
\end{aligned}
$$

The linear acceleration components of body i are: $\ddot{x}=1.1 \mathrm{~m} / \mathrm{sec}^{2}$ and $\ddot{y}=0.2 \mathrm{~m} / \mathrm{sec}^{2}$, and the constant quantities of this system are: $\mathrm{m}_{\mathrm{i}}=1.2 \mathrm{~kg}, \mathrm{~m}_{\mathrm{j}}=2 \mathrm{~kg}, \mu_{\mathrm{i}}=2.5 \mathrm{kgm}^{2}, \mu_{\mathrm{j}}=4 \mathrm{~kg} \cdot \mathrm{~m}^{2}$,

i) Calculate the number of degrees of freedom of the system.
ii) Calculate the joint reaction forces at the instant.
iii) Calculate the angular acceleration $\ddot{\varphi}_{i}$ and the acceleration vector $\ddot{\mathbf{q}}_{j}=[\ddot{\mathrm{x}}, \ddot{\mathrm{y}}, \ddot{\varphi}]^{\mathrm{T}}$
iv) Check your results.
v) Express the equations of motion of the system in matrix form.

4-1) Define the types of constraints and explain their differences.
$4-2$) Consider the classical problem of a circular disk D with radius $R=\sqrt{14} \mathrm{~cm}$ rolling on a rough flat horizontal surface S. Let $P\left(x_{0}, y_{p}, z_{p}\right)$ be the point of contact between D and S, where: $x_{p}=0.5 \mathrm{t}^{2} \mathrm{sec}, y_{p}=-0.5 \mathrm{t} \mathrm{sec}$, and let $C\left(x_{c}, y_{c}, z_{c}\right)$ be the center of mass of D where $z_{c}=0.75 t^{2}$ sec. Let x, y and z be coordinate axes fixed on S with origin o and with z being vertical, and let ξ, η and ζ be the moving coordinates fixed on D with origin C. Where the rotational transformation matrix of the coordinate systems is given by the matrix
$A=\left[\begin{array}{ccc}0.3 & 0.2 & -0.7 \\ 0.2 & 0.5 & -0.4 \\ -0.7 & -0.4 & 0.6\end{array}\right]$, (a) Deduce the components of the vector ρ from C to P and the position vector \mathbf{r} from o to C at $\mathrm{t}=2 \mathrm{sec}$. (b) Show that the rolling disk with no slipping condition is considered a non-holonomic constraint, while the rolling with longitudinal slipping is considered as a holonomic constraint.

5-1) Define the differences between a special purpose computer program and a general purpose computer program. What are four major tasks that must be performed by the general-purpose computer program for the dynamic analysis of multibody systems? 5-2) Write down the meanings of the following abbreviations CAE, CAM, CAD, CAP, DAP, ADAMS, MBOSS, DADS.

