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Abstract

Eaaluating performance of real twenlory systems by using the conventional methods is a
complex task because ol disengagement of decision variables, cspecially for nctworks. Therefore,
managers resort to the trnover rate {(TOR) as a local and aggregate ool. Analytic models of TOR
scem (0 be scarce in the literature, This study developed several TOR models, based on stochastic
continuous-review system, starting {rom completely structured objeciive functions. Two novel
philosophies are highlighted to justily sushing TOR from cost and profit views. The models include
short ones Lhat can be practically applicd 1o a bstract stochastic and sophisticated features of the
systen. The models are conducted to hypothelical and real data, followed by regression analyses.
‘Ihe results confirm that Faster TOR is mosz profitable ina wide range. Thatis justificd by the
profitability curves wilh different allowable shortage probabilitics and unit dynamic rates, Those
curves are found skewed left to the optimun profulability. The explored statistical trends
demonstrate generality for the system paramelers that arc merely modilying the trend coefficients.
The same procedure can be followed to develop models for other deterministic and stochastic
syslems under several varietics of proceeding incidences.
Kevwords: Inventory: Tumover rate; Stochastic demand; Rush; Return'l.oss, Regression

1. Introduction

The convendonal methods of  invenlory
control  measure  the  system performance
through optimizing objective functions based
on deciston vartables such as order quantity,
maximum inventory level, cycle  time,
maximum shortage, aud/or reorder  level.
[However, a system is characterized by one or
more of such variables, number ol items, and
status o [ demand ( Elsayed and Boucher 1 985;

Soltan 1998). Almost, Lhc objeclive is a cosl
function. The TOR is an idiom, among the
vocabulary of inventory systems; il emulates the
speed in mechanicsl systems. Generally, 1t s a
function ol the ratio, “average annual demand 1o
avcrage inventory level,” in cither dimension or
dimensionless  form. (Sce, c.g.. Ballon 1981,
Harhalakis ¢t al. 1989, Wright 1992, Vergin 1998,
Archibald ct al. 1999, and Ballou 2000.) TOR is a
powerful lool for simply auditing the system
performance as a whole or at dillerent stocking
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putnits ol one or more items. Morcover, as wiil
have seen later, TOR [actlitates understanding
and constructing the systom components that
needed to formulate a perlormance or objective
function. This power comes from the fact that it
explains several variables and paramcters of the
system. The syslem stays slow with small TOR
and viee versa, scarching for an oplimum value,
Thus, il becomes the language ol practitioners,
Ervaluating real performance of a system with a
ool but FOR becomes dillicult; Turcther, 1t
beconmwes harder if the systein 15 a newwork
rving meupne vy el echelon s maoti-
item) as in sparc parls disposition syslems
(A right 19925 ballow 2000),

Why TOR is cructal for inventory s ystems?
Suppose that the systent is a single-item single-
echelon and basic EOQ fiis ideally. 1n such
sitiatien, analysis based on owder quantity
conhrms analysis based on TOR. Bul, in facy,
when the systew faces two opponents -human
and natwre, s wsswaplion Lails. In real
sttuations, most ol managers agree  with
neeessily ol anadyzing TOR becanse of its
drastic impact on the system profitability. From
where change in profitability while relurn
margin s fixed? This queston has a unique
answer that there are some hidden components
of cost and profit depending on the system
structure and cidences. Modeling a system as
a function of TOR enables cxtracting explicit
cxpressions for those components.

TOR analysis of inventory systems doesn’t
reccive  considerable  attention  in literature,
Nevertheless, practitioners are usually anxious
about that parameter. Ballou (1981) almost was

the [lirst cffective report about TOR. ¢
developed a pencralized cmpirical formula (o
report the  relationship  between  average

mventory level and throughpul—in aggregale
and at dilterent locations of inventory network.
This formuly is a4 compound lincar-power
function of average annual stock at cach
locition. Fie held this relationship lor available
data on curves called “turnover curves’ and
followed regression analysis 1o comparc his
lormula. Morcover, thosc TO-curves can be
used o estimale the impact of system changes
on performance and to sct standard inventory
levels. Ballow (2000) continued the work (o
demonstrate the practicality of TOR and 'TO-
curves. Wright (1992) devcloped a nearlv
analytic formula for TOR, bascd on basic EOQ

system, under cost and prolit coasiderations, i
uscd his formuda 10 examine the disposition of
spare parts belween inventory ceheions ofa case
assuming lognormal demand, Wright didn’t derive

his Tormuln on basis  of  cexplicit  stochastic
vaniables.
This  paper  mainly  follows  analytic

mcthodology, integiated with empirical routine, in
order o solve for TOR as a decision variable. The
focus is the commaonly applied inventory system—
stochastic contimuous-review system (Q, r), where
a lixed order @ is placed as inventory drops to
ceerder level v As v vesult, lead Urae L wlways less
than cycle time as shown in Fig. 1. It also assumes
fixed order cost, hixed unit howitng and shortag:
costs, Demand, lead time, and cycle time are
slalionary stochastic.  Avcrage inventory level
depends on shortages” processing, i.c. backordered
or not {lost sales). Basic structure ol stochastic
(Q.r) system can be explored [tom Elsayed and
Boucher (1983, Winston (1994, aud  Soltan
(1998). Thus system s analyzed in details in Zheng
(1992), Zheng and de Groote (1993), and Axsiiter
(1996). 1t is also uxtended for more complexity
such as Baker and Ehrhardt (1995), Chiang and
Chiang  (1996). Wang aund  Gerchak  (1996),
Agrawal and Seshadrt (20003, Corbett (2001). and
Johansen and Thorsienson (2004). This paper is a
complelely dilicrent dircetion since it reconstructs
and analyzes the mentioned system using TOR
beside other rational paramelers.

The paper develops two cateporics of TOR
models ‘backordering’ the shortages that may be
incurred cach cycle. First category, $2, includes
two models  based  on  different  pragmatic
philosophies that can be explained by nalural
incidenees. Sceond calegory, §3, mnalyzes the
complexity of liral category and demonstrales
other versions ranging from higher (o lower
complexitics. The models are primarily developed
o meet  different  demand  distribwtions, A
procedure is described for filting to uniform and
normal distribution~. The same procedure can be
lollowed 1o fit ditferent demand  distributions.
However, an approximation is proposcd (o adjust
skewed  distributions  relative 10 the  normal
distribution. The ciTect of main parameicrs on
TOR are demonsiraled, in 34, bascd on
uniformally and normally distributed  demands.
Final discussion and concluding remarks arc stated
i §4. Appendix A contains complementary
mathematical and statistical processes. Al required
nomenciatures and 1erms arc set at {he paper cod.
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Fig.1. Stochastic continuous-rcvicw system (2, ).

2. Basic TOR Modcels

Average inventory level of the deseribed
(2, r) system is

=0

h

O+r—EIX!.

Here, the dimensionless TOR form is adopted,
formally

D
k= !
0.5Q+r-E{X}

2 XY (1)

The condition r 2 E{X} refers 1o Lhe system

stability. So, the range of 4 in formula (1) is
tricky, sinee theoretically,

ke[0, DI - A0 0, »].

Thus, O <k <DI{r—-£5X)) represents the real
experimental range of a system. Il the eyclic
shortage isn’t backordered, average inventory
level modifics Lo

1=050+r~E{X}+E{S],

Conventionally, the average annual inventory
cost consists of three components (sec Llsaycd
and Boucher 1984), ordering cost, holding cosl,
and shortage cost, formally

D
O =—(0+glliSH+
p=d ) Q( -E) \ f) i (2)
wp(0.5Q +r - E{X})

where the annual unit holding cost 1s olien rated
lo the unit value; i.e., wp., Substituting from
formula (1) and rearranging to

5 4 18 .
'1'(‘(&.,'):0'})‘0(0 i .S.)+u[1:D'
[ 4-:’;’,.\':—:']

k

Henee, the system becomes (A, ) instead of

(Q.r).

Ry

2.1.  Rush TOR models

This scction presents two dillerent pragmatic
TOR models. Both models extend the typical
model by adopting phitosophies rushing the
TOR (e, increasing its value). Management
may have conservalive views aboul nalure of
market and product beside change of slorage
covironment. Intuitively, faster TOR leads to
smaller cycles and larger number of orders.
Therefore, save anlfor pain of rushed TOR
should be compared wilh associated costs of
frequent reordering and probable shortage.

2.1.1. Rush of valuc-loss

The known holding cost refers to normal
condilions ol holding (sce, c.p.. Vlsayed and
Boucher 1985). The syslem fulure may be
subjected to extermnal random cvents, in addition
to random demand, that leads 1o abnormal
changes. Therefore, some of known saurces ol
holding cost may behave randomly such as
deterioration,  lechnological  depreciation,
market  competition, material cost, and
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cconomic  mstabiiity. Thus, with slow TOR,
onminal value ol invenlory may be reduced.
Phat may drastically increases holding cost by a
serious  stochastic component. The nsk of
vidue-loss 18 assessed by the probability of one
or more random cvents,

Proposition-1. Value-loss [ollows a randoem
variable proportional 1o inverse of TOR and
wtal vatue of invemory, Let y be a random
variable, 0 < y <1, representing unit va/ue-loss
rate with density function f,. Let £ be a binary
random variable, & 0,1}, representing state
ol vatuc-loss with mass lunction

S e 0, £

Let o be the maximum number of risky limes in
wiich the sysicin may de subjected 0 value-
Joss. Then, 2E 15 a binomially distributed
random variable, with parameters noand f.(1),
representing the number o £ risky times. Let @
be the expected value-loss rale per cach
slowing down, 0 <a . Then,

which in turn, explains  another  binomial
distribution with parameters #n and f.()E4y) .

Under such conditions, the system is subjeeted
to valuc-loss at dilferent levels of inventory.
Bascd on average inventory level, the average
annual value-loss can be formulaled as

C =apl0.50+r-FE{NY)

P
=,x,,%. (4)

AN

Since pl) s the total value of invenlory and
a plays the role ol proporlion paramcter, the
proposition is proved. ven a may be a virlual
parameter; it has a real effect on the systcm. In
other words, it may be Dbiased in cost
cstimation, but the crror of assessing its valuc
becomes insignificant in estimating & As a

resull, the average annual invenlory cosl
becomes

0.5D(0 1 4E1S}) | (w+a)ph

k
(‘;) A - r} '

N

TCih,ry =

. (5

Following differentiaf calculus, optimal values
of k and TC arc obtained as

k!: = D LR * (6)
0.5D(0+ gl15)) v
= ’ +r—LX
(w+a)p
. D
TCk, k) =(wva)p ZA" N =] (7)

(13

Also, the optimal value ol # could be derived
Ly applying diricrental culeulus o omula (5).
Au obstacle exists that the optimal values of &
and # constitute [unctons ol each other: henee,
there are no  explicit expressions  lor both.
Therclore, following  recursive  marginal
analysis is necessary, which hardly complicates
the solution and may {cad o unacceptable
valucs. (Sec marginal analysis in  Winston
1994.) Relering to formula (2) and A ppendix
Ald, there is trade-oitf between holding cost and
shortage cost according lo r——increasing r
reduces shortage cost and incrcases  holding
cosl, atd viee versu. The author proposes thal it
is casicr and applicable to follow a lower bound
on r provided a specific demand distribution
and an opper bound on the prabability of
shortage. Also, & generates a trade-olT between
holdine and shortage cost but with reversed
cflect. Concerning cost trade-off, such rush
should be compared with incurred shortage cost
and its cifeet on the total cost fimction. The
lcrm (w4 a)p plays a role as unil holding
cosl—delerministic component plus stochastic
component. Intuitively, (w+a)=1 consumcs
the unit value in the average mventory level (hat
becomes o burden on the system, The case
becomes  worst  when(iw+a) > 1,

nccessilales  sclling  faster & lo
malicious luture incidenees.

thus
confront

2.1.2. Rush of dynamic value-return

This  scction  odels  TOR  from  the
profitability aspect. 1t is known by managers’
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experience that faster TOR is more profitable
(Wright 1992). Thus, maintaining inventory for
only short cycles is preferred if the gain can
recover ordering and shortage costs, As long as
the selling price is almost constant, such
increase of profit explains a hidden component
of return. (This component is thought hidden
because there are no similar explicit parameters
or mathematical expressions in the literature.)
The author calls this component ‘dynamic
value-return,” and calls associated system
‘dynamic return inventory system.’

Proposition-2. Dynamic value-return follows a
random variable proportional to TOR and total
value of inventory. Let 7 be the expected
dynamic value-return rate per each speeding up,
0 < fg<1. The average annual dynamic value-
return can be formulated as

P, = fpDk . (8)

The parameter f also has some virtual
properties. Notice that average inventory level
isn’t the principal of proposing P, in spite of
its inclusion n 4. Further, the concepts of e and

[ are exclusively adopted to rush TOR. The
annual normal value-retun is

£, =mD, (9}

where 7 is the normal unit value-return rate.
Then, the average annual profit yields

Z(k,r)=(npD+,3pDk)—0‘5DD(O+ gE{S))

—+ L{X}~r
(7]

wplD

Tk

1%
ZPD[’H-ﬂk_IJ_
0.5D(0 + gE{S}) - (10}

[%+E{X}-r]

Appendix A2 shows the ditficulty of getting an
exact optimal value of &, while derives a lower
Jlimit such that

. [ 0.5D(0 + gE1S }))"'s
. b
k Tower — , l 1
s r—E{X) (h

which can be used to find, graphically, the exact
value—at maximum value of Z. Hence, the
optimal value of average annual profit becomes
exactly

Z(k,r) = pD[n + [, - k"‘,’}—
A

pOv+ IJA,’-Z)[:D. +ELX - ,-J

g

(12)

2.2. Fitting to demand distributions

The models of §2.1 were developed in
general distribution [orms. In other words, the
probability distributions of demand during lead
time weren't specified. This section follows a
procedure to fit those models to uniform and
normal distributions, based on maximum
probability of shortage per cycle. This
probability reprcsents a ‘service level measure’
{SLM) {Zipkin 1986). Such concept is adopted,
in this paper, as a handmaiden to approximate »
and E{S}. This procedure also suits other
demand distributions, may be with extensive
statistics. Thereforc, the author proposed a
transformation for unimodal distributions,
which enables switching from normal demand
assumption with mimimum statistical work. All
inequalities based on SLM are set at equality
sense, which equivalently converts the analysis
of r to an analysis of & Thus making it possible
to substitute smoothly in the corresponding
formulas. Such SLM sets E{S}=Ao,,A, 20
and r—-E{X}=A,0,,A,20, for all demand
distributions, wherc A, and A; are multipliers.
(See Appendix A3 for instance.) Consequently,
expected annual shortage could be expressed
similarly.  Generally, ‘for all demand
distributions, expected shortage per cycle under
service measure can be a multiplier by the
standard dcviation of lead time demand.’ Later,
in §4, oy is reported as a function of D,
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2.2.1. Uniform distribution

Suppose that demand during lead time is
uniformally  distributed random  variable.
Appendix A3.1 estimates £{X), E{S}, and a
lower limit of r providing an SLM of &. If the
value of » is set at equality sense, thus

K= 2
; 0.5D[0+0.5g&’ (b—a)] 3 +(b-a)(0.5-¢)
(w+a)p ‘

(13)

TC(k, €)= (w+ a:)p[%{-)- +(b—a)e - 0.5)],
) (14)

_ B
! (b—a)(e —0.5)

[O-SDIO + o-_ﬁ_g£<ta:ezlj“" i
k"rmlu — ,

(15)

Z(k,£) = pD[:r + Bk, —]:—‘]
fii
~ plw+ Bk, )[ +(b-a)e - 05)]

(16)

p

2.2.2. Normal and other distributions

Suppose that demand during lcad time is
nomally  distributed  random  variable.
Appendix A3.2 estimates a lower limit of r and
an upper limit of E{S} providing an SLM. If
both values are set at equality sense, thus

. D
k“ = 5 0. 1
0.5D(0+ga, (04¢% —e)]| io
(w+a)p e
(17)
TC(k,,€) = (w+ a)p[gk_g -/lro'_‘.], (18)

N a5
e [ 0.5D0 + g, (0.4¢™* — g, )]]
A *ower

— i ﬁj
! B /?.L_O"\. ,
(19)
Z(k},6) = po[ﬂ e, —f’_-]—
g 20)

2| D
p("v"'ﬁ"",'l )[_._’1:0.\'}
kg

Furthermore, similar models can be
developed for other symmetric or asymmetric
demand distributions by repeating the same
fitting procedure. Appendix A3.3 proposes an
approximation for nonlinear asyminetrical
distributions relative to normal distribution. The
principal is to deal with the distribution as if it
is normal, and thcn a correction factor, &, is
applied. Value of & measures the biasness from
normal distribution. Nonlinear symmetrical
distributions can be dealt as normal with
acceptable errors. Generally, the original
models can be directly applied to any
distribution especially those discrete and
multimodal by caleulating £4X}, ay, and E£4S}.
However, fitting to a distoibution s
advantageous for studying the effect of
distribution parametcrs on TOR.

3.  Extreme TOR Moaodels

This section discusses the TOR based on
analyzing the reonder level r between (wo
cxtremes, complelcly analytical models and
simple models. TOR models developed in §2
were fitted to demand distributions based on
SLM to cstimate » and E{S}. If the optimal
value of r is d etcrmined following a complete
analytical routine, then E{S} is obtained as a
result. Appendix A< exhibits using calculus for
this purpose. The optimal values of r, which
couple the models defined by formulas (6), and
(11), arc respectively

2D gy 058D
k, (w+a)p

[rooas, @n
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n =§.+ E{X) -% [ reods. @2)
; WK, )p "

Now we have different two equation systems:
la] (A1-2), (21) and (6); and [b] (A1-2), (22)
and (11). Each equation system can be
iteratively solved for optimal r and %, starting
with E{S§}=0 until reaching convergence.
Generally, Eqs (21) and (22) can be fit to any
demand  distribution.  There are two
complexities inherent in using this procedure—
iterative process and integral part. The integral
part is a function of r, which complicates
solving for r,

Work can be simplified by adopting SLM of
¢ for shortage. Since the integral part represents
the probability of shortage in each cycle, it can
be replaced with £ That adds some simplicity
to solve for r. Furthermore, to increase
simplicity, the iterative procedure is dispensed
to obtain ‘cride values’ for r and k by replacing
r, in equality sense, in formulas (21) and (22),
according to the demand distribution used
(Appendix A3). Hence, we can solvc easily for
k. If formulas (21) and (22) are fit to

uniformally  distributed demand with
rearrangement, we get
- D
ko = 0.5:gD ° (23)
(b-a)05-£)+ 2 BL
{(w+a)p

h=— 2 |- 0% | oy
(b-a)0.5-€)|  p(fk,+wlky)

formula ( 23) directly gives crude values for £
while formula (24) seems difficult to solve
directly. However, using differentiation, the
term SOk +w/k reaches its minimum value at
k =(w/ 3" ; making this substitution only in
the right hand side yiclds a lowcr limit as

~ ovocr D 0.25¢g
e | ]~ . @5
g (0.5—5)(b—a){ p\/wﬂ] )

Following the same procedure for normally
distributed demand, we get

. D

k, = . (20)
Ao, 0.5eu1>

i (w+a)p

Eﬂ. _ D | - .O'SEg _ ) (27)
Ao\ plky +wiky)

Similarly, substitutc % = (w/ 8)**, then

- D 0.255g

klowe = 1- . (28)

/ /q’so-.l’ [ PV Wﬂ}

Similar work can be done for other d emand
distributions to get crude values for both r and
k. However, to relate asymmetric distributions
to normal distribution, managers could accept
the factor 6. The multiplier 84, replaces A, in
the corresponding cquations in this section (see
Appendix A3.3). The simple models of TOR
developed in this section may attract
practitioners although they aren’t completely
analytical.

4.  Application and Regression Analyses

Fitting the developed TOR models to specific
distributions comprises the standard deviation
of demand during lcad time as a parameter in
each model. Therelore, it is necessary to specify
the relationship between this standard deviation
and average annual demand.

Proposition-3. 1t is empirically reported that
standard deviation ol annual demand is a power
function of its mean (Hermon 1976).
Consequently, since standard deviation of
demand during lcad time depends on the
average annual demand, it can be approximated
as o, =wD”. Where 0<w and 0<y<1 are
constants. This relationship is found amenable
to a large variety ol unimodal distributions with
changes in @ and y. Thus, values of @ and y
explain the type of density function of demand.
The value of @ can be fixed for all distributions
adjusting the value of y. This power relationship
is yielded statisticully aided by available huge
data. The author doesn’t confirm this
proposition to the discrete distributions.
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The primal objective is to ecxamine the effect
of average annual demand on TOR models in
an environment of &, J, and & Intuitively, study
of £ is equivalent to study of r; review
Appendix A3. Statistical analysis is primarily
eonducted aided by proposition-3—assuming
uniformally and normally distributed lead time
demands—to the models by formulas (13),
(15), (17), (19), (23), (24), (26), and (28). Other
theoretical distributions such as | ognormal are
experimented using the original models in
addition to corrected fittings (relative to normal
distribution by value of &). The parameters o f
each model are substituted over wide ranges of
hypothetical and field values. Hence, regression
analyses are carried out. All regression analyses

yielded the same strong relationship (R? =1)
for all models and all distributions such that
k;;,,;ém, =uD", as shown in Fig. 2. Where, 1

80
TOR =uD”; R*~1 o
60 §
o
o
[_.
= 40
-E n ’
=
& ) =
20 .d:d: o™ ]
- ——c=0.00
—B— =045
0 .
! 5 9 13 17 21

Avcrégc annual demand (D), 000s

Fig. 2. TOR models with £'s folds given a or .

Furthermore and connected to the primal
objeetive, it is necessary to examine the effect
of TOR on the profitability as a measure of
system performance. Some  economieal
measures of performance were discussed in
Arcelus and Srinivasan (1987). Let n be the
system profitability such that
n=ZI{(TC+ pD). Next plots arc also samples
of plots made with wide ranges of syslem
parameters. The experiment is carried out aided
by the profit TOR model defined by formulas
(10) and (lI1). Fig. 4 analytically proves
believes of practitioners, that faster TOR is

and v are constant for a specific distribution
over a range of ) given values of other
parameters. Moreover, # and v are found strong
parabolic finctions (R*=1) of £ Different
plots are made for optimal and crude TOR’s
versus D, which found versions of the pattern of
Fig. 2. Ranges of 'I'OR’s that registered in Fig.
2 increase with augmented a or f# Fig. 3
indicates that f registers optimal TOR’s higher
than a while change of & is stronger than
change of 4 Chunge of both parameters
becomes stronger with higher values of £ At
each value of £, values of a greater than | have
significant effect on TOR while the effect of g
asymptotes at I. Crude TOR’s behave similar to
optimal TOR’s except they register higher
ranges. For uniform distribution, all meodels
register smallest ranges of TORs.

70

60

50

40

30

Optimal TOR

20

0 yees —e—g=0] ——a=10
1 =0 —f=10

s 9 3 17 2

Avcrage annual demand (D), 000s
Fig. 3. TOR models wuh a's and f's folds given &

more profitable (Wright 1992). At each value of
g, increase of TOR yields inerease of 7 up to
optimum point (k,.5") after which 5 drops
drastically in shortcr range. Also, this occurs at
each value of g (Fig. 5). The stream of
((k;,11°),€) fits a second order polynomial
approaches a straight line as shown in Fig. 4.
The stream of ((A;,,n'),ﬂ) fits a slightly

positive straight line as shown in 5. Both
streams are dismembered in Figs. 6 and 8
respectively. Profitability curves in Figs. 4 and
5 fit strong high order polynomials. Moreover,
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those curves show that 7 is a negatively skewed
polynomial of ks with high order (about sixth).
At each value of g change of profitability with
TOR ¢ xplains trade-offs between holding cost
in a panel and order cost, shortage cost, and
dynamic return in another panel. Sum of
holding cost and shortage cost becomes
dominant after the optimum point. The curves
in Figs. 2 and 3 can be said as optimal TO-
curves.

Fig. 6 dismembers the stream of ((k,,7°),£),

in Fig.4, into polynomials of £ with high order
(about sixth). Both trends are strong and
positively correlated. From the view of
profitability, Fig. 7 demonstrates that difference
between maximum and optimum TOR'’s isn’t
so high up to £=0.20 while reaches its
maximum value, about 35%, around £ =0.50,
Their trends follow high order polynomials of £
and their ratio is approximately parabolic of &.
That supports the scenario appeared in Figs. 4
and 5. As cited before, maximum TOR is
determined by £ (allowed shortage probability

of cycles) and the parameters of stochastic
demand during lead time. Also, the stream of
((k;,7"), 0), in Fig. 5, can be dismembered
and discussed through Fig. 8. Notice that
change of G\ & doesn’t significantly affect k,
although this affects »  within a positive

straight line. The skewness of profitability
curves shown in Figs. 4 and § can be more

29

.....

—— =000
—B—c=025

==QOpt. siream

e

Profitability

0.9

0.1 ¢

TOR\

Fig 4. Profitability with £'s folds given 3.
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explored fromFig. 9. The skewnessof 7 as a
function of 0 behuves smoothly with steepest
ascenl just after zero . Logic of dynamic return
appears in the steepest increase of skewness by
just having # after zero. If zero [ is excluded,
skewness of 77 would follow a strong third order
polynomial of J. Also, if £'s less than 0.15 are
excluded, skewness of 1 would follow a strong
second order polynomial of & Skewness of 7 as
function of £ fluctuates up to £ about 0.15 and
continues smooth alter.

Changes of othcr parameters—order cost,
unit value, unit shortage cost, and distribution
parameters—don’t  violate the  reported
statistical trends. Siygnificant changes of system
parameters just modify the coefficients of a
trend and keep strong correlation. For instance,
the power relationship between TOR and D
only modifies the values of # and v. In other
words, all paramcicrs scale the trends while
maintaining similar behaviors. Analytically,
stability of the system follows that r> E{X}
which is kept unrestricted throughout this paper.
Nevertheless, adopting high SLM of ¢ may
drive the system to work at unexpected shortage
conditions especially around £=0.5. The
system demonstraics real stability by setting £
below 0.5 while 0.2 or below secured the best
stability in all modcls for all ranges of other
parameters (Fig. 9).

9.5 —G—ﬂ:” Ly
— =00

75 — Opt. siream

5.5

Profitability

18

TOR\ £

Fig. 5. Profuability with f*s folds given £
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Fig. 6. Optima of TOR and profitabilily vs. &
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O QOpt. TOR
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[
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—
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E
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28 0.0
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Dynamic rate (3)

Fig. 8. Optima of TOR and profitability vs. 2.

5. Conclusions

Inventory sy stems realize review and ordering
discipline of stock control. A system comprises
one or more featuring parameters such as order
quantity, review level, review period, and
maximum inventory level. Those parameters
don’t demonstrate the system dynamics. TOR
combines other featuring parameters in addition
to some parameters of demand distribution.
Therefore, TOR can be wused as a
comprehensive featuring parameter instead of
classic parameters. It has the property of
locality and aggregation for multi-echelon
systems. The main objective has been to
develop analytical models switching to TOR
analyses of stochastic continuous-review
system. That facilitates the study of system

205 1.0
7
16 q 0.9
« 129
& ® Opt.TOR 0.8
© 9
= 0 Max. TOR
53 O Ratio 0.7
15 0.6
0.00 0.15 0.30 0.45
Scrvice measure (£)
Fig. 7. Max. and opt. TOR’s vs €.
0.0
-0.3 b
-0.1
o -0.2
g 1.3
il -0.3
=]
-
9 23 0.4
7]
—©-4 -0.5
——
-1.3 -0.6
0.00 003 010 020 030 040
£; 3

Fig. 9. Skewncss of profilability curves.

dynamics and performance. Two categories of
models have been developed. Total inventory
cost and profitability are adopted as measures of
performance reflecting the TOR impact. The
study shows how to (it those models to different
demand distributions guided by the uniform and
normal distributions provided a service level
measure of shortage. Thus, two critical terms
can be expressed as explieit functions of
standard deviation of lead time demand—
expected shortage per cycle and review level
minus expected lead time demand. Expected
shortage per cycle can be approximated by
rating the standard deviation of lead time
demand. For agprcgate and multiple stock
positions, experimental TO-curves can be
constructed from available data about average
annual demand and average inventory level. If a
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company doesn’t apply a suitable inventory
system, those curves may follow different
trends  with  inconvincible  correlation.
Therefore, analytical curves are necessary as
standards. Analytical TO-curves simply fit
formula (1) with frequent modification. Here,
two classes of analytical curves—optimal TO-
curves and profitability curves—have been
developed. Review Figs. 2 to 5. Practitioners
deem faster TOR as more profitable than
slower TOR. This belief has been analytically
confirmed, up to a specific point, as shown by
the developed profitability curves. However,
change of profitability as TOR changed is
explained by inherent trade-offs between
different cost components. The regression
analyses dedicate several trends for the
essential system parameters. Such trends are
found stable, since they are changeable only in

Appendix A

Al. Shortage estimation

M. 23

coefficients over wide ranges of parameters.
Salient is that optimum TOR fits a power
function of the average annual demand. This
paper possibly answcrs several questions about
produced TOR, idcal turnover curves (linear or
nonlinear) and their coefficients, inventory
investment impact with TOR change, and
currently applied inventory system (see Ballou
2000). Furthermorc and important upshot, TOR
is recommended f{or analytical or empirical
outlining the system components and
performance. Thus. the developed procedures
and proposed tools are handmaidens for other
deterministic and stochastic systems. The paper
places a comprehensive methodology for
analyzing and adjusting a system coinciding
with the nature of items, storage facilities, and
markets.

For a review level, r 20, and a random lead time demand, X > 0. the shortage and expected

shortage per cycle are respectively
0 x<r

S(xy=1{" ,

X—r, x>r

(Al-1)

ElS) = fS(_r) Syde = ["(x=r) S0 = [ f (x)dx —rr (x)dx

= [’xf(x)dx-rp{x >r}.

A2, Optimal TOR with dynamic value-return

(Al-2)

First and second derivatives, respect to k, of the profit function described by formula (10) are

D*(O+gE(S))

szt (w N
Bk 'pD[k”ﬂJ

Zkl(%+E{X}-r]

(A2-1)

ok* K

IZk,r) —ZpD(i]+ DYO+gE(S)NE{X}~r) .
k’(§+E{X}——r]

(A2-2)

Since Z is maximized, and the second derivative is always negative (i.c., Z is a concave function),

the optimal value of & satisfies
2 D(O+gE{S
0= p(w+ k)~ (O+gELSH

2[%+E[X}—r]

(A2-3)

that is difficult to solve for k. A lower limit for optimal k can be got at w =0, thus
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D(O+gE{S}))
2 1
2[‘% + E{X} - r]

which is rearranged to yield formula (11). Since w is a deterministic fraction, it can be neglected in
the term Ac® +w. That if w is actually very small, formula (11) would be exact optimal value,

0= fok? -

(A2-4)

A3. Fitting to demand distributions

A3.1. Uniform demand
If demand during lead time, X, is uniformally distributed random variable, then mean and
standard deviation of demand, and expected shortage per cycle are respectively

E\X}=05(b+a); o, =0.29(b—a), b2a20; (A3-1)
2
BS= [G=nsds = [T=0ax =05 ((’;‘_’2)  b2r2a20; (A3-2)

which shows that £{S} is a function of r. Notice that E{S} < E{X} from the ratio

E{S} _{b—r y b—r
E{X}

Suppose that £ is an upper limit on the accepted probability of shortage during lead time, in each
cycle, then

<, bzrzaz0, (A3-3)
h—ua b+a

P{XZr}Sa——){ ! fdx}s‘r:——) bor Se—rrzb-glb-a), bzaz0, 0£s<l. (A3-4)
b-a b-a

By equality sense of formula (A3-4), then as an upper limit

E{8} =05 b-a)=1.73s%, . (A3-5)

A parameter such as g, or sensibly 1-¢, is known, in the context of inventory, as ‘service level
measure’ (SLM). If r 2 b, there is no chance for shortage occurrence (i.c., £ =0).

A3.2. Normal demand
Following SLM of ¢ for normally distributed demand leads to

P{er}s‘e——)P{X—#" > rﬁ“"}ﬁeaﬂzﬂ., > r2p, Ao, -354 <3, (A3-6)
GA' o.\' U.\'

Wherc, 4, is the standard normal multiplier having ¢ area to right. Expected shortage per cycle is
given by ’

E{S} = M .r(x - r)e'""“"‘”r”axl:dx
Oy

- 0.4 I” P (I F oy — 0.4r I” g M- oy Fdx
Oy Oy

_o4
0'_‘. "

xe 0RO e pPIX > p}

Using the substitutions y=(x— )/ oy, y:y, »o,and y,=(r-u,)/o,, then
E{S}=04 r (yvo, +px)e'°""!dy—rP{X 2 r)

=040, f ye ™Y dy 0.4, .[" e dy - rPIX 2 r)

=040, fye'"‘syzfly +u PlX2r}—rP{X 2r}
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- 0‘40_"‘ .[’ ye—n.s,.:dy +PLX 2 ri(ay —r)

=04 e NVl L Py > plu 1), (A3-7)
which represents an exact value. By equality sense of formula (A3-5), then as an upper limit is
E{S}=0,(04¢™% —¢4), -3< 4_<3. (A3-8)

Thus, £!S} becomes function of £ The term 0.4e™*

—gA_ plays as a multiplier for standard
deviation. Since E{S} decays as A, augments (4, =3 e=0= £{S5}=0) and vice versa
(A, =23 =1 E{S} =max). Setting 4, >3o0r A, <~3 isn’t acceplable. It depends on system

conditions. For instance if the system is stable, i.e. ¥ E{X},then 0<£<0.5.

Al3. Asymmetric demand

Other continuous demand distributions such as lognormal can be fit relative to normal
distribution. Hence, a lower limit on r can be estimated as
r2u,+6A oy, —3<A4 <3, (A3-9)
Where & >1 for negative asymmetry and &6 <1 for positive asymmetry. This value applies
correction for standard deviation multiplier in both r and E{S}. The author proposes that
8 = median, | u, suites nonlinear distributions that have one local maximum especially if they are
moderately asymmetrical. Notice that the ratio ji, / median, is somctimes used as a measure of
asymmelry (see Businger and Read 1999). Hence, formula (A3-7) modifies to

E{S)=80,(0.4¢%% —£2), -3< A_<3. (A3-10)

This approximation isn’t amenable to distributions such as exponential, power, linear, discrete, or
compound distributions, and necessitates repeating the fitting procedure.

Ad. Extreme TOR models
First derivative, respect to r, of formula (5) is

OTC(k,r) 0-5D(-g(D/k+E(X}=r) [ [(x)dx+(O+gE{S})]
ar (D/k+ELX}—r)
which equates to zero at optimal conditions and reviewing the second drivative. Then

, (Ad-1)

__r (0-+gE(SY) _
0= _[ f(x)dx + S DIk BT (A4-2)
by applying optimality conditions of &, then
0=—ff(x)dx+2(W+a)p(D/k+E{X}—r), (A4-3)

gD
which is rearranged to solve for optimal r yielding formula (21). First derivative, respect to r, of
formula (10} leads to

(O+gE1S))

0= [ f(x)dx— , Ad-4
| fs g(D/k+E{X}—r) (Ad-4)
by applying the optimality conditions of &, (see Appendix A2), then
2 f—
0=rf(x)dx—2(w+ﬂc Yp(D/k+ E{X} r)’ (A4-5)

gD
which is rearranged to obtain formula (22).
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Nomenclatures and Terminologies

a,
o
B
C

X

w, y

D
Jd

me APy oy O

~
-

™

b

o

R
220

"o
x

aa}a L 2O N

=
<

N v S

: lower and upper limits of the uniform distribution;

: dimensionless, expected value-loss rate (frequency of reduction), 0 <«
: dimensionless, dynamic value-return rate (per unit return), 0< <1,

: loss component, added to the cost function, due fo o;

: random variable representing unit value-loss rate, 0< y < 1;

: regression constants of power trend between oxand D, 0 <@, 0y <1;
: average annual demand;

: dimensionless, correction factor for demand normality bins, § e N,
E{S} -
: expected demand during lead time, also sy ;

: accepted probability of cyclic shortage, a ‘service level mcasure’ (SLM);
: probability density function of demand during lead time;

: unit shortage cost per annum;

: system profitability, n € 9,

: optimum system profitability;

: tumover rate (TOR )}—positive value; here, it is dimensionless, k¥ > 0;
:optimum TOR;

: dimensionless, standard normal multiplier corresponding to ¢, 0< 4, <3;

expected cycle shortage (in number of units), also g ;

: maximum number of times the system may be subjected (o value-loss risk;
: order cost;

: unit value (purchase or production cost);

: dynamic rcturn component, added to the return function, due to 7

: normal returm component;

: dimensionless, normal value-retum ratc (per unit retum), 0 < 7

: order quantity;

: constant review inventory level;

: random variable representing cycle shortage;

: standard deviation of demand during lead time;

: average annual inventory cost;

: regression constants of power trend between TOR and /). 0<u, 0<v <],
: holding cost rate; 1.e., annual unit holding cost is wp;

: continuous random variable representing demand during lead time;

: random variable representing value-loss state & e {0, 1} with {£,(0), /,(1)};

: average annual profit (net return).
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