Question 1: [7 points] Answer true or false. If the statement is false, state why its false then write the correct statement.
a) There does not exist an analytic function $f(z)=u(x, y)+i v(x, y)$ for which $u(x, y)=y+5 x$.
b) If the function $f(z)=u(x, y)+i v(x, y)$ is analytic at point z. Then necessarily the function $g(z)=v(x, y)-i u(x, y)$ is analytic at z.
c) If $\left|e^{z}\right|=2$, then z is a pure imaginary number.
d) The mapping $w=e^{z}$ takes vertical lines in the z-plane onto horizontal lines in the w-plane.
e) If $\int_{C} f(z) d z=0$ for every simple closed contour C, then f is analytic within and on C.
f) If f is analytic within and on the simple closed contour C and z_{0} is a point within C, then

$$
\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z .
$$

g) If z_{0} is a simple pole of a function f, then it is possible that $\operatorname{Res}(f(z), z 0)=0$.
Question 2: [5 points] Fill in the blanks
a) The region in the complex plane consisting of the two disks $|z+i|<1$ and $|z-i|<1$ is \qquad (connected/ not connected).
b) The statement "There exists a function $f(z)$ that is analytic for $\operatorname{Re}(z) \geq 1$ and is not analytic anywhere else" is false because \qquad
c) The complex exponential function e^{z} is periodic with period of.
d) If $\ln \mathrm{z}$ is pure imaginary, then $|\mathrm{z}|=$
e) If n is a positive integer and C is the contour $|z|=2$, then

$$
\int_{C} z^{-n} e^{z} d z=
$$

Question 3: [five points̀ for each sub question]
a) Derive the trigonometric formula

$$
\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta .
$$

b) Show that if $f(z)=x^{3}+i(1-y)^{3}$, then $f^{\prime}(z)=3 x^{2}$ only when $z=i$.
c) Show that if a function $f(z)$ and its conjugate are both analytic in a given domain D then $f(z)$ must be constant throughout D.
d) Show that if $v(x, y)$ and $V(x, y)$ are harmonic conjugates of $u(x, t)$ in a domain D, then $v(x, y)$ and $V(x, y)$ can differ at most by an additive constant.
e) Find all roots of the equation $\sin z=\cosh 4$.
f) Let C denote a contour of length L, and suppose that a function $f(z)$ is piecewise continuous on C. If M is a nonnegative constant such that

$$
|f(z)| \leq M
$$

for all points z on C at which $f(z)$ is defined, then prove that

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

g) Evaluate the integrals

$$
\int_{|z-i|=2} \frac{1}{\left(z^{2}+4\right)^{2}} d z, \quad \int_{|z|=2} \tan z d z, \quad \int_{|z|=2} \frac{d z}{\sinh 2 z}
$$

h) Give two Laurent series expansions in powers of z for the function

$$
f(z)=\frac{1}{z^{2}(1-z)^{\prime}}
$$

and specify the regions in which those expansions are valid.
i) Show that

$$
\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)^{2}} d x=\frac{2 \pi}{e^{3}}
$$

j) Find the linear fractional transformation that maps the points $z_{1}=-i, z_{2}=$ $0, z_{3}=i$ onto the points $w_{1}=-1, w_{2}=i, w_{3}=1$. Into what curve is the imaginary axis $x=0$ transformed?

