METAL FLO: IN THE EXTRUSION OH IION-CIRCUEMR ELCTIONS

Prof. Dr. A. A. Nasser* *,
Asst. Prof. S. Li. Serce *
Frof. Dr. li. . .i. Farce. anci Ln_{\S}. A. H. Zakzouk ** *

AESTRACT

In production, most extrusion conteiners are cyindericel, but. the extruded section is often oiher then round. In this peper the flow of pure aluminium was analyzed during the extrusion of noncircular sections from round billets. A modified visioplastirity techinique was used to obtain quantitative values of strain rate, atrain end flow stress in the deformation zone. Also the extrusion preasure was measured and analysed. The effect of the extrusion retio and extruded ahape geometery on the previous parameters was discussed and was compared with that occured when extruding round shepes. Extrusion experiments were carried out on commercially pure aluminium through square cornered dies and different extrusion ratios. Results showed that The extrusion efficiency was found to be marimum at an extrusion ratio of $14: 1$. The maximm value of the extrusion efficiency ranged between 45 and 51% depending on the extruded section geometery. The square sections has a more hompgeneous flow than that of rectangular sections.
When extruding a rectangular seation the flow in a direction parallel to the length is more homogeneous than that in a directIon parallel to the width depending on the width to length ratio. The maximum value of the flow atreas, near the die exit, on a plane of aymmetry parallel to the width of an extruded rectangular section ia more than that found on a plane of symetry parallel to the lenglh depending on the width to length retio. NOMENCLATURE

- Abdel - Hady Abdel - Bary Nasser, Prof, Dr., Dean of faculty - and chairman of production Engineering $\%$ machine desicn department, Faculty of Engineering and technology, wenoufia university.
- liahmoúd l:ohamed Farag, Prof., Dr., Chaiman of :aterials Encineering Lepartnent, American University, Cairo, Ewpt. ea Soad Mohamed Seras, Asst., Yrof., Broduction Ingineering \& machine design department, Faculty of Engineering is Technolod, henoufie university.
*** Abdel - Aziz Cioustafa Zakzouk , B. SC., Demonstrator,

INTRODUCTION

Extrusion of non circular aections from cylindrical containers has been studied by several workers for different meteriala and conditions, reported by Jhonson and Kudo ${ }^{l}$. Generally these workers had found that the hole shape for a given reduction influenced the extrusion pressure only slightly. Jhonson ${ }^{2}$ studied the flow patterm of square, rectangular, triancular and I-section extrusions and concluded that flow patterms on planes of symmetry were similar to that of plane-atrain or axisymmetric extruaions of equivalent sections. The present paper concerns a complete analysia of the effect of the extrusion ratio and the geometery of the extruded section on the total extrusion pressure in terms of the homogeneous, redundant deformation and the frictional work . A modified visioplasticity technique, proposed by Childs ${ }^{3}$ and, Farag and Sellars ${ }^{4}$, was used to study the flow of metal using aplit specimens and to calculate equivalent strain, equivalent stress diatributions on planes of symmetry of the extruded specimens. Also the value of the redundant defomation was calculated and compared with that ootained from analyaing the extrusion pressure.

EXPERTMENTAL WORK

Experimental work was carried out with direct extruaion of noncircular shapes using sharp edged (90°) square dies. Material used was "commercial pure aluminium (99.97%) supplied in form of 40 mm diameter hot extruded rods. Billet dimensions were maintained constant at 30 mm nominal diameter and 40 mm long. The billet was aplit in half longitudinally prior to extrusion and a grid is applied to one of the split faces. The grid consists of a get of lines parallel to the billet axia, called flow lines,
and a set perpendicular to the first called transverse lines. The two halves of every specimen were anealed for one hour at 350° to produce auniform grain size and were put back together, the billet is partially extruded, removed from the die, separated along the same plane and the grid line distortions are observed. The extrusion experiments were carried out in a sub-press mounted on a 200 ton. Amsler compression testing machine under constant extrusion apeed of $7 \mathrm{~mm} / \mathrm{min}$. The extrusion container was 30 mm inner diameter. Lubricant used was a suspension of colloidal graphite in acetone and was applied to the billet before extruding, this gives an even fitm of graphite when acetone had dried off. The method was adopted for all specimens to prevent sticking of both during the extrusion. Eight extrusion ratios of (1.767, 2.5, 3.25, 7.07, 9, $14.14,28.3$ and 36) were used in the present work, and were divided into three sets, every set contained a square, rectangular and circular shapes. At every set the length of the square shape and the width or length of the rectangular shape equals to the diameter of the round shape. Thus, there was three seta of meridian planes, where the flow distortion was examined, passing through the axis of symmetry of the extruded apecimens and having an initial dimenaion equals to the container diameter and exit dimension equals to : 20 mm in the first set, 10 mm in the second set and 5 mm . in the third set. Extrusion experiments were carried out at room temperature.

METHOD OF ANALYSIS

I- EXTRUSION PRESSURE

The extrusion pressure was analysed as Jonas ${ }^{5}$, who considered the extrusion pressure to have three components,
a- The homogeneous or ideal work of deformation (P_{h}).

- The extra preasure due to the inhomogeneous or redundant deformation (P_{r}).
c- The pressure required to overcome the sliding resistance to the billet length beyond the dead metal zone due to friction (P_{f}).
and defined the total extrusion pressure as:

$$
P_{e}=P_{h}+P_{r}+P_{P} \quad \ldots(1)
$$

The maximum extrusion presaure obtained experimentally under different extrusion conditions was anelysed according to the following procedure :-
1- Ideal extrusion pressure $\left(P_{h}\right)$. The value of ideal extrusion

$$
\begin{align*}
& \text { pressure was calculated from the relation of } \\
& P_{h}=\ln \left(A_{0} / A_{f}\right)=\ln (R) \\
& \text { and the extrusion efficiency }(\eta) \text { was then defined as } \tag{2}\\
& \mathcal{Y}=P_{h} / P_{e} \\
& \text { 2- Presaure to overcome frictional work }\left(P_{p}\right) \tag{3}
\end{align*}
$$

This pressure was estimated according to the suggession of Jonas ${ }^{6}$ and Co-workers as

$$
P_{f}=P_{e}-P_{0}
$$

and as $\quad P_{e}=P_{0} \exp 4 \mu^{\mu} / D \quad \ldots$ (5)
1.e: $\quad P_{f}=P_{0}\left[\exp \left(4 \mu_{L} / D\right)-1\right]$
and $\quad P_{0}=P_{h}+P_{r}$ at the coring point.
Therefore the frictional work ratio was taken as (P_{f} / P_{e}).
3- Pressure required for redundant deformation (P_{r})
Redundant deformation in extrusion arises because of friction along the container walls and the die face, this reatraines the free flow of the material resulting in internal ahearing in the billet, mainly in a zone that bell shoped in section with the narrowest part of the bell at the die oriffice. The drop in pressure from the start of extrusion to the coring point can be attributed to that required for frictional work. The pressure at the coring point therefore exceeds the pressure for homogeneous deformation by an amount equal to that required for redundant deformation, on thia basia the redundant work can be estimated from the following relation

$$
\begin{equation*}
P_{r}=P_{0}-P_{h} \tag{7}
\end{equation*}
$$

Therefore the redundant work ratio can be calculated as the ratio $\left(P_{r} / P_{e}\right)$.

DETERMTNATION OF THE FLOW STRESS

For a non work-hardening material the yield atress has a constant value but when the material is one of work - hardeniag materiala the yield stress has an increasing value with strain increasing. Johnson ${ }^{6}$ suggested an average value of the yield atresa \vec{Y} which was defined as the average value of the true streas over the range of logarithmic strain from 0 to ($0.8+1.5$ In $\frac{1}{1-r}$, and r, is defined as :

$$
r=\left(1-A_{f} / A_{0}\right)
$$

The flow atress of the material used was considered to be the average yield stress $\overline{\mathbb{Y}}$ corressponding to the value of reduction (r).

ESTTMATION OF THE COEFFICIENT OF FRICTION

The apparent coefficient of friction (μ) between the billet material and the container was calculated in the present work from the expression developed by Hirst and Ursel ${ }^{7}$

$$
\mu=\frac{D}{4\left(I_{2}-I_{1}\right)} \ln P_{1} / P_{2} \quad \ldots \text { (B) }
$$

Expresaion (8) is based on the assumption that the drop in extrusion presaure is due intirely to reduced friction between the billet and the container.

II- VISIOPLSTICITY TECHNIQUE

The flow of aluminium under the different extrusion conditions was analysed from measurementa of grid lines machined on a meridian plane of partially extruded billeta. The measurementa are based on the assumption that grid lines initially parallel to the billet axis coincide with the atreamines of the flow and grid linea initially perpendicular to the billet axis represent the progresa of deformation at intervala of ram travel equal to the initial grid apacing, i.e. steady state conditions. The calculations of metal-flow parameters are based on a procedure reported by Childs ${ }^{3}$ and modified by Farag and Sellars ${ }^{4}$ as follows : (i) the average velocity V over a lencth of a atreamine between two grid points was taken as proportional to that length and the direction coincides with that portion of streamline. Graphical methods were used to compute the radial and axial componenta of velocity, u and v, respectively, Irom V and to smooth their values independently along the atreamline. (11) the equivalent atrain rate $\dot{\bar{\epsilon}}$ was taken as

$$
\dot{\bar{\epsilon}}=\sqrt{\frac{2}{3}}\left[\left(\frac{\partial u}{\partial r}\right)^{2}+\left(\frac{\partial \nabla}{\partial z}\right)^{2}+\left(\frac{u}{r}\right)^{2}+1 / 2\left(\frac{\partial u}{\partial z}+\frac{\partial \nabla}{\partial r}\right)^{2}\right]^{1 / 2} \ldots(9)
$$

The values of $\dot{\bar{E}}$ were calculated at 1.8 mm intervals through out the flow zone. The atrain rate components in the above equation were obtained graphically as the alopes of the plotted curves which deacribe :
1- The variation of ∇, u independently with r at constant z.
2- The variation of v, u independently with z at constant r.
where r, z are the radial and axial coordinates of the point at which the mean equivalent strain rate was calculated. (iii) the equivalent strain, $\bar{\epsilon}$, at points on the streamline was calculated from the equivalent strain rate, $\overline{\bar{\epsilon}}$, by integration along the streamlines as the expression represented by Farag and Cellars ${ }^{4}$:

$$
\begin{equation*}
\bar{\epsilon}=\int \mathrm{a} \bar{\epsilon}=\int \frac{\dot{\boldsymbol{\epsilon}}}{\nabla} \mathrm{dl} . \tag{10}
\end{equation*}
$$

(iv) Equivalent stress ($\bar{\sigma}$) :- The stress strain curve of many metals in the region of uniform plastic deformation can be expressed by the simple power curve relation ${ }^{8}$

$$
\begin{equation*}
\sigma=k(\epsilon)^{n} \tag{11}
\end{equation*}
$$

EXPERIMENTAL RESULTS AND DISCUSSION

1- Mechanical behavior of Aluminium :

A compression teat was performed on the material used through out the experiments and a true stress-true strain curve was obtained, and it was noticed that the material used is a work-hardening material. Then the material constants in the power curve relation $\sigma=k \in^{n}$, which describe the plastic deformation of the material, was obtained from a log-log plot of the true stress-true strain curve.
The values of the strain hardening exponent, n, and the strength coefficient, k, of the material, were 0.31 and $14.45 \mathrm{~kg} / \mathrm{mm}^{2}$ respectively.
An average yield stress (\bar{Y}) was calculated, for different extrusion reductions (r), as the area under the true-true strain curve sorrese bonding to a logarthmic strain ranged between $0,\left(0.8+1.5\right.$ In $\left.\frac{1}{I-r}\right)$ divided by a value of logarithmic strain of $\left(0.8+1.5 \ln \frac{1}{1-r}\right)$.

- Coefficient of friction : As previonsly illustrated the friction between the container wall and die face plays an important part in determining the pressures required for extrusion and the homogeneity of metal flow. In the present work, the coefficient of friction was calculated during the extrusion experiments and was found to have an average valve of 0.042 .
- Extrusion pressure :

Fig. (I) shows that The values of P_{h} and P_{e} increased with $10 g\left(A_{0} / A_{f}\right)$, but there is a difference between their values due to the inhomogeneous pressure lost in friction and redundant deformation.
－ 27 －
The difference between P_{e} and $P_{h_{1}}$ incressed with the increasing of A_{0} / A_{p} ，because of the increasing of inhomogeneous pressure．
The preasure，p_{e} ，was found to increase with increasing the ratio of length to width for non circular shapes，this ia due to the increage in redundant deformation with increase of length to width ratio．It was found that the percent increage of the maximum extrusion pressure for non circular sections over that required for round aections，of the equivalent extrusion ratio， varried between 5－25\％for squere aections and 13－39\％for rectangular gectiongs of width to length ratio $1 / 2$ ，depending on the extrusion「妇。
Fig：（2）shows that the frictional work retio P_{p} / P_{e} was almost constent，which is underestendable aince（ μ ）wes conetant． The tedundant work ratio，P_{x} / P_{e} ．Fig．（2）decreased with increasing extruasion ratio（and tended to increase again after extrusion ratio $=14$ The cecresse in P_{T} / P_{e} with the increase in reduction indicates a more homogeneous flow．The redundant work ratio showed a minimum value for all shapes at extrusion ratio $=14$ ．Fig．（2）ahows that the square sections had a more homogeneity in flow than rectangular sections of width to length ratio $a k$ ，and the round sections had move homogeneity of flow due to the decrease in redundant value then all other shapes． The decrease in（ P_{T} / P_{e} ）and 1 ts indication of a more homogeneity of flow wes reflected in the effeciency of extrusion（ $Z=P_{h} / P_{e}$ ） as show in Fig．（3）which the extruaion effeciency increased with increasing reduction，due to the improved homogeneity of metal flow caused by the decrease of dead metal volume with incree se dead metel zone angle at high reductions．It should be noted that this increase in（ 2 ），
Fig．（3），tended to decrease again after reduction $=14$ this is due to the increase in the value of redundant deformation as diacussed previousty．
It must ba noted that，circular sections had the highest value of extrusion eqficiency（ q ），this is due to the fact that circular sections had mo re homogeneous plow．then after shapes．It was found thet，the extruaion effeciency（ (2) levels decreased with decreasing the width to length ratio of non circular shapes because of increasing the value of redurdant work．It abould be noted that， the aquare shapes had a value of efficiency more than that of rectangular shapea of width to length ratio a ψ ，which can be attributed to the more homogeneous $110 w$ of square shapes than rectaneular shapes．

Fig. (4) shows the photographs of the pertly extmaded billeta, for geveral ghapes and reductions. It should be noted that the distor thon of the flow lanes was examined on two perpendicular planes for each non-circular section and it was found that the dead metal zone angle measured in a plane passing through the width is more than that found on a plane passing through the length. The results indicated that the dead metal zone angle increased with decreasing shepe thickess along direction of the meridian piane due to the increase in the extrusion ratio.

- Equivelent strain diatribution :

The equivalent strain, E, was calculated as illustrated previously. using the modified viaioplarticity technique. Then the aquivalent strain distribution wa obtained fox various plenes of aymetry of difiexert extruded sections at different extrusion ration.
The amount of redundant defometion involyed in extruaion can be evaluated qualltatively by examining the equi-strain contours in the deforming material. The ideal case is when the contoure are atrajght lines at right angles to the billet axis with the bighest value equal to $\ln \left(A_{0} / A_{p}\right)$ where A_{o} / A_{f} is the extruaion ratio. Inspection of the equi-atrain contours shown in Fig. (5) shows that the strein velues at the die exit axe much higher then the ideal value, eapecially near the extruded bar gurface due to the extra ahear strains caused by friction. The amount of redundant deformstion was calculated as the difference between the ideal atrain, of value equal to $\operatorname{In}\left(A_{0} / A_{f}\right)$, and the maximum value of strain obtained in Fige(5) for every specimon. Figo(6) illustrates the variation of guch difference (redundent deformetion) with the varlation of ertrusion ratio for different extruded sections, $1 t$ should be noted that for all sections, the value of redundant derormatlon decreased with the extrusion ratio increase, t111 it reaches the extrusion retio of velue $14 \mathrm{I}_{\mathrm{y}}$, where a mintmun value of redundent desprmation was found and then the redundant deformation tended to increese, ggain. with the extrucion ratio increage.
Fig. (6) ahow that, at the ame extrusion ratio, the extruded round section hed a value of redundant deformation leas than all other shapes, then, the square section had a value of redundant deformation more than that of the round section, but the rectangular section showed the hichest velues of redundant defomation than round and aquare gectiona. It ahould be noted that the material. Rlow in the square gectiona fag more homogeneous than that of rectangular

- 29 -

Fig. (5) also, shows that, on a plane of symmetry, having the same initial and final dimensions, as the width to length ratio, of a non circular ahape, decreases (decreasing the thickness about the plane of symetry) the value of the redundent deformation decreases also which leads to a more homogeneous deformation in a direction parallel to the length than that which is parallel to the width, which can be attributed to the high realatance to deformation in the width direction.

- Equivalent stress distribution

The equivalent atress distributions was calculated as described before, and the results abtained are shown in Fig. (7). It should be noted that the value of the stress obtained was directly depending on the valres of the strain at these points at which the stresa wes calculated.
It should be noted that the values of the stress distribution were higher than the yield atress of the material due to the work kardening property of the material used. It was clear that the greateat value of stress was found near the die exit corner because of the resiatance to deformation.
The maximum value of the atress increased with increasing of the extrusion ratio.
On a plane of symmetry, having the same initial and final dimensions, the maximum value of stress increased with the decreasing of the width to length ratio of a non-circular ahape.
Also, it should be noted that, the maximum value of the stress on a plane of symetry parallel to the width of a non-circular shape is more than that found on a plane of aymetry parallel to the length, because the resistance to flow in the widh direction is more than that in the length direction.

CONCLUSTONS

(1) The rectangular sections required an extrusion pressure more than that required for square sections where the percent increase in pressure, for sections examined over that required for round sections of equivalent extrusion ratio, varried between 5-25\% for square sections and 13-39\% for rectangular sections depending on the extrusion ratio.
(2) The square sections had a higher value of extrusion efficiency than that of the rectangular sections where the extrusion efficiency was found to be 48% for square sections, 45.8% for rectangular shapes and 51% for round shapes which gave the higher efficiency than all other shapes.
(3) The redundant work retio vas found to have a minimum value at exrusion ratio of $14: 1$ where the extrusion efficiency was found to be of a maximum value.
(4) Square sections had a more homoceneous than rectancular sections, where the value of redundant strain, measured in square section vas found to be less than that found in rectangular sections.
(5) "Wen extruding a rectangular section the flow in a direction parallel to the length is more homogeneous than that in a direction parallel to the width.
(6) The maximum value of the flow atress, near the die exit, on a plane of symmetry parallel to the width of an extruded rectangular section is more than that found on a plane of aymmetry parallel to the length.

BIBLIOGRA PHY

1- Johnson, W. and Kudo, H., "The mechanics of metal extrusion", Manchester University press, 1962.
2- Johsnon, W., "Experiments in the cold Extrusion of rods of non circular section", J. Mech. phys. solids, Vol. 7, p. 37 (1958) .

3-Childs, T.H.C., "Metals Technology., 1974, L, 305.
4- Farag, M.M., Sellars, C.M., Analysis of double maximum flow patterns in axisymmetric extrusion of HH 30 Aluminium alloy, Metals Technology May 1975, p. 220.
5- Jonas, J.J., McQueen, H.J., and Wong, W.A., "Derformation under hot working conditions." I.S.I. Special Report, No.108, p. 49, (1968).

6- Jhonson, W., Mellor, P.B. "Plasticity for Mechanical Engineers" Van Nostrand (1962).
7- Hirst, S. And Ursell, D.H., "Metal treatment, 25, 409, (1958).
8- Dieter, George, E., Mechanical Mitallargy, Mc. Graw-Hill, Kogakusha. - I961.

 aplit dillet in a mamalen plen of
round extruted eaction $20^{\circ} \mathrm{ma}$
a apllt tllet in n maridion plane pirellel to the lenvith of a rectinguint extmided neotion $: 0 \times 10 \mathrm{~m}$

- oplit blilut in n moridion plome porolikit te che width of a rectememiar oxtruded vartimn 20×10

(o the wisth of of rotunguler extruded

mond exinudet in n matiditan

P1g. (6) Eefect of extruaion ratio(R) e extruded ehapa on tho redundant etrein.

