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Natural Convection From A Vertical Cylinder Of Finite-Height
Embedded In A Darcian Fluid-Saturated Porous Medium
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Abstract: In this work, natural convection from a cylinder of finite beight is studied. The cylinder is
embedded n a flyid-saturated porous medium. Both ends of this cylinder are assumed tharmally
isolated and the cylindrical surface is maintained at a constant temperature. Steady state condition and
isotropic physical properties are assumed. The convective heat transfer procass is described by the
comminuity equation and momentum equations in both axisl and radial directions and energy equation.
These goveming equations are cast in a dimensionless form by the proper definition of the dependent
and independent variables. Since the final form of the partial differentisl governing equations is of an
elliptic type, they have o0 be numerically solved simultanecusly through out the flow field. These
goveming equations are solved, numerically, using the finite difference mathod. According to this
technique, an equivalent set of algebraic linear equations is derived. This set of equations 1s, in tum,
solved using the well-known Gauss-Seide) iterative method. A computer program iz designed 1o solve
the present proposed theorefical model. The convective flow properties, in cage of cyfinder of
dimensionless height of 2.5, 5, 7.5 and 10, are studied. Through this study, the Rayleigh number has
the values of 1,5, 10, 20 and 50. Both the [ocal and average Nussalt munbers are caleulated for sach
operating condition. Finally, a correlation is proposed to estimate the average Nusselt number asa
fimction of both cylinder height and Rayleigh number.

1. Introduction

Natural convection heat transfer in a fluid-saturated porous media is of great interest
because of ns numerous practical applications. Thermal insulation, chemical reactors,
underground spread of pollutants and geophysical problems are examples of these
applications. Hsieh et al. [1] reported a nonsimilarity solutions for mixed convection from a
vertical {flat plate embedded in a porous medium. Both surface heating-conditions of variable
wail tempersture and of variable heat {lux were studied. Correlations for local and average
Nusselt numbers were presented. Non-Darcien mixed convection along nonisothermal
vertical surfaces in porous media was studied by Chien-Hsin et al. [2]. The entire mixed
convection regime is covered by a single parameter. A finite difference scheme was used to
solve the transformed system of equations. Mixed convection from a vertical cylinder
embedded in a porous medium was studied by Aldoss et al. [3]. Nonsimilarity solutions are
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obtained for the case of vaniable wall temperature and variabie surface heat flux. The effect of
characteristic parameters of the problem on heat transfer is investigated.

Natural convection in a porous medium is a point of interest for many investigators.
Non-Darcian natural convection around a horizontal ¢ylinder buried near the surface of a
fluid-saturated porous medium was studied by Christopher et al. [4]. The goveming egquations
are solved numerically to obtain the flow field and the temperature distribution around the
cylinder. Local and average Nusselt numbers are expressed as a function of cylinder depth,
the modified Rayleigh number and Darcy number. Leu and Jin-Yuhjang [5] studied natural
convection from a point heat source embedded in a non-Darcian porous medium. Local
similarty and modified Keller’s Box methods are employed. Natural convection heat transfer
between two porous media separaled by a vertical wall was studied by Higuera and Pop [6].
The problemn of coupled heat transfer by matural convection between two fluid-sawrated
porous media ar different temperatures separated by a vertical conductive wail is investigaled
analytically and numericaily, taking in account the two-dimensional thermal conduction in
the separating wall, Higuera [7] studied thie conjugate heat transfer across a thin horizonial
wall separating two fluid-saturated porous media at different temperatures. Matural
convection heat transfer from an isothermal vertical surface to a fluid-saturated thermally
stratified porous medium was studied by Angirasa and Pererson [8]. They presented the
results of a numerical study of natural convection heat transfer in a stable stratified fluid-
saturated low porosity medium. In this investigation, the boundary layer approximations are
described and a wide range of ambient thermal stratification levels is considered. Recently,
Wasel [9] studied natural convection from a long vertical cylinder embedded in fluid-
saturated porous medium. A local similarity solution was obtained. The validity of (his
solution is restricted to the case of long cylinders.

In the presemt work, natural convective heat transfer from a constant wall-temperature
vertical cylinder of finite-height surrounded by a Darcian fluid-saturated porous medium is
investigated. A correlation of the average Nusselt number as a function of both the
dimensionless cylinder height and the
Rayleigh number is derived.

F

2. Mathematical Model of the Problem
The mathematical description of
the problem and the coordinate system
used to investigate the natural convection
induced due 10 a hot finite cylinder
embedded 1n a fluid-saturated porous
medium is shown in figuce (1}. The
problem is described by the differential
form of the conservation laws of mass,
momensum and energy in the cylindrical
coordimates. As is shown in the figure, it is
reasomble 1o consider the flow as
axisymmetric one. Which means that, the
tangentinl component of velocity and its
derivatives vanish in such situation,
According to the nature of the examined
flow, the derivatives with respect tothe Figure (1) Physical description of the problem
anguler displacement also vanish. The
governing equations of the flow can be, in turn, written as;
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Where K and y are the permeability of the porous medium and the dynamic viscosity;
respectively. p, pa and g are the pressure, density, therma! diffusivity and gravitational
acceleration. Volumetric-averaged radial and axial velocity components and temperature are

denoted as v, , v, and T; respectively. The physical properties of the medium are assumed to
be isotropic and both fluid and solid matrix of the medium are assumed to be in thermal
equilibrivrn J10). As is shown from equations (2 and 3), the Darcy modet is applied to
describe the flow in the medium, This model is suitable for 2 medium of small permeability.
To eliminate the pressure, the equations of motion (2 and 3) are differentiated with respect to

z and r; respectively, and with some manipuiations, they can be reduced to the following
single equation;

ar dz u ér ' )
Moregver, with the aid of the definition of the coefFicient of thermal expansion £,

- (Lir
ﬁ'—(paT]pY

and taking in account the Boussineq approximation, one can eliminate o from equation {5) as;

ér dz v ar ’ ©

Equations (1,4 and 6} sare the equations governing the flow, they must satisfy the following
boundary conditions;

at r=1r,;
v = V.= Bamd T = T, = constant

a v
vr

O and T= To = ambient remp.
(7
a rrramdz=10

vy=0ad T=T,
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at rxr.amdz=1;
v.=0ad T =17,

Where 7, and { are the cylinder radius and height; respectively. T, and 7., are the temperature
at the cylinder wall and that far from the wall. In the forgoing boundary conditions, the heat
is assumed to be ransferred from the cylindrical surface area only and the temperature of the
surface is maintained constart. Moreover, heat transfer in the axial direction is neglected.
This assumption is, reasonably, valid in case of relatively long cylinder or in case of insulated
base and top of cylinder. One defines the stream funclion w such that it satisfies the
continuity equation {1). Accordingly w is defined as;

1 &
s ®

1 &8t 1 8 1 8° K &T

R Ry R ©®
r ér r r r &z 3 ar

16y 8T 1 8w 6T _ 'T 161 8T

TrF: 8r T rer 5z a( 5 Y Y YA (10

With the aid of equations (7 and 8), one can derive the boundary conditions, which nmst be
satisfied by equations (9 and 10). These boundary conditions take the form;

w=0and T = T, = consun( .

a r—>wo;

= OQand T = T, = ambient temp. ,

(11)
at reEroamiz=0;

8
Y o oamdT=T. ,
alt rxrroadz=1[;

OQand T = T,

|

In order to put equations (9 and 10) and their boundary conditions (11) in a dimensionless
form, one can introduce the following definitions of the dimensionless dependent and

independent variables as;
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z r-T
R=Z,z2=% 7= 4a9=_"2o (12)
r, s, ar, r-T

Accordingly, the dimensionless form of the momentum and energy equations and their
boundary conditions can be written as;

1 2y 1 8f 187 46
SRS SR RN B — 3
RoR: R'GR Rzz° &raR : (1
g ! é8 ‘9
_lﬂf__+iﬂﬂ_‘ész+_l_——+éz (14)
R 7Z @R R 7R FZ JR R 7 &2z
With the boundary conditions;
at R =1;
f=0ad8=1
at R —»awo;
Jf
—— =0 and =10 .
57 and &
at Rl and Z = 0; (15)
ﬂ:ﬂ ad & = ( \
2R
at Rz ad Z = L
ﬂ:o and 8 = ¢

J R

Where f and & are the dimensionless stream function and dimensionless temperature;
respectively, L 18 the dimensionless cylinder height and is defined as / /. Zand Rare
dimensionless axial- and radinl- direction coordinates and Ra is Rayleigh number, which is
defined as;

Kgp T~T)r,
av

Ra =

By solving eguations (13 and 14), the values of the dimensionless stream function and
dimensioniess temperature can be determined through out the flow field. Accordingly, the
dimensionless axial and radial components of velocity can be determined, using equations (8
and 12), as follows;

V = —— = -~

alr, R &2
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Where I, and V. are the dimensionless radial- and axial-components of velocity,
Moreover, one can calculate the local Nusseit number according to the following expression
as;

. &o
Nu = L — .. )
(£
where Au is local Nusselt number based on the cylinder radius r,, which is defined as ;

)

Nu = ﬁ—r"— .
k

and # is thermal conductivity of the medium and # is the local hear transfer coefficient, which
is defined as;

. 2
(7,-1.)

Where g, Is heal flux at the cylinder wall.

h and g, = -#(Z ).

7T
or

3. Numerical Procedure

The governing equations (13 and 14)
are solved numerically using the finite
difference technique. According to this
technique, the partal differential equations
describing the flow are transformed tw
associated sets of linear ajgebraic equations,
To camry out this approximation, the
derivatives  involved in the goveming
equalions are approximated by finite divided
differences, where the considered flow field
is covered by variable-step size grid. This
network is shown in figure (2). This grid
consists of twe groups of lines; the first group
is paralle! to the cylinder axis and the other
one is norma! 1o it. The identifier ofaxis~
parallel lines s denoted by k. where k takes
the values from [ to . # is the 1otal mumber -
of columns. The identifier of the normal lines &~i33¢5 6 7 § ¢ mro2
is denoted by j, where / changes from [ to the total number of rows (mr). Any node on the
network is identified by the identifier i, where i is defined as a function of j and k according
to the relation;

i=n(j-1)+k (18)
As n the figure, the step size in both directions is taken changeable such that the step size
near the wall {in R-direction) and at both ends of the cylinder (in Z-direction) are smaller. The
step size (ARY); and (AZ); are calculated according to the following relations;

(R), =7, (AR, .
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for the lower half of the cylinder; (A Z),, =7, (A 2D),

for the upper half of the cylinder, (A Z),,, =(A Z), /7,

Where both vy, and v, takes values greater than unity

Considering a general interior point / as shown
in figure (3), one can approximate for the variable fthe
first and second derivatives with respect to R as,

oty furleY for ) L ra L
oR” 2 7, (AR) ’ I
-1 ' i.l'+1
’ b
8 f . Sy L4y S — T,
{?R: t 7 1 A.R 1 * J‘_f'ﬂ
Y. (AR) T l

In the same manner, one can derive the regl of
the derivatives. As it is clear, the foregoing derivatives . . .
are sirnilar to Lhe formulas of central fimite differences if Figure (3) Apa_rlof gpd sh_owmg
T 7" a general node / and its neighbor
¥ = 1 [11] Substinetion in final form of govemning ..
equations {13 and 14); leads to the following two
equivalern sets of difference equations;

A‘t'afhl-‘-BlJ‘:+Cf~fJ-I+Draf.‘4n+E[).l—vn+E:0 ¥ (19)
A6+ B8, +C 8,0+ D" 8.+ E"8,, =0 .20

Equation (19) is the equivalent difference equation of the momentum equation (13), while
equation (20) is associated with the energy equation (14). These toro recursive relationy are
valid for all imterior nodes of the grid. The coefficients of these equations are defined through
the following relations;

A=y} (AZY-[R-057, (AR)]
B=~Ry (+7,) (A2)' - 057,72, (.- (AR) (AZ)' ~ R 7,” (7, +1) (AR)’

C = Ry, 7} (A2 + 05y, (AR (AZY

D = Ry (ARY

1l

E =Ry y, (AR

F=-05y y'(AR) (AZY R'Ra 18, + (r.-1) 8 -7, 8]
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4 =-0257, 7, (AR) (AZ) -[f,, +(.-D f, -7, f] ~ 7" (A2)' R,
- 057, 7, (AR) (AZ)

B\ =~025(y, ~D 7, 7. (AR) (AD) [, +&r.~D) fi~7, /..]
+025 7, 7. O, =D ARY (AZ) [f, . + (7, -D) S -7, Sl
+ 7 @, +D B2} R - 057y, ¢, -1 (8R) (AZ)}
+7,} (7, +1) R (ARY?

C. =025y 7, (BR) (AW, + (7, - =7, [.]
-7, ¥ R(AZ)? + 05y} (AR) (AZY

D\ =025y, 7. (ARXAD)[f,, +(r, -V f, -7, fin1-7." R (AR}

E' =025 7,7, (ARXAZ) S, +(r, - 1) £, ~7, ful-7} 7. R (ARY’

According to equations (15) and referring to figure (2), the values of the variables fand & at
the nodes which lie at the mesh boundaries are as follows;

for k = { (comresponding to R = /),

f=0 and @&=1 ,
for & = n (corresponding t0 R —adj;
f=finand 8=0¢0 ,
2n
for j = I and k=1 {corresponding to Rx/ and Z=10);
_f| = _fi-(-.' and g=0 N
for j = m and k+ ! (correspondingtoR=J1and Z=1),
J=firr and @=0 i
e
| | .
The two sets of equations (19 and 20) are solved Lo ;2
simultaneously using the well-known iterative method by J——+£—-—-—~'-—~
Gauss-Seidel. Seeking for linearity of equations (19 and 20), i '
the coefficients of both sets are taken consiamt throughout each (AR —
iteration process. Accordingly, these coefficients are evaluated ;

based on the associated values of variables obtained by the

previous iteration. According to the definitions of Figure (4) Notations used
dimensionless radial and axial component of velocity and local  for calculation of Nusselt
Nusseit mumber {equations {16 and 17}] and referring to figures rumber.

{3 and 4), one can determine their values numerically as;

V =_I_ Jo * (J'r‘l)f; - J’,f;,,
" R 27, (AR) g
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poo L L oS =
"R 2. (aZ) ’

"an"' 48:"| -34

Nu=- G0 (AR

4. Results and Discussions

A computer program is designed according to the previously explained technique. The
proper numerical value of the maximum radial distance associated with R ~» = is found to be
15. Through out all the carried out computer runs, the average step size in both directions (AR
and AZ) is tlaken as O 2, whiie the ratio between the size of two successive steps (¥, and y.) 15
taken as 1.1. The mesh size is taken as 13x735, 25x75, 37x75 and 51x75 for the cylinders of
dimenstonless height of 2.3, 3, 7.3, 10; respectively.

The dimensicaless stream function contours and isotherms are shown in figure (5); for
a dimensionless cylinder height of 10 and Rayleigh number of 10, Referring o [figure (5-a)],
the values of the stream function change rapidly near the cylinder wall, especially around the
middle of the cylinder. Also near the cvlinder wall the conmtour lines are aimost parallel to the
cylinder axis. As it is expected, these lines are nearly parallel to the R-axis near both ends of
cylinder. Considering the temperature-contours figure (5-b), the temperatwure gradient near the
lower end of the cylinder has very high value. Far from the cylinder wall, the vaiue of
gradient decreases in upward direction rill it reaches minimum value at a value of Z of about
8 For a radial distance R higher than 9, there is no effect of the hor wall of cylinder (no
buovancy force) and there the gravitational force is dominant.

PR S S T T WO T

T L4 i =] L8
B

Figure (5-b)

Figure (5-1)

Figure (5) Dimenuonless stream function-lines and isotherms for
Rayleigh mimber of 10 and dimensioniess cylinder height of 10.

Figure {6) shows the dimensionless velocity distribution ir both the radial and axial
directions. Considering the radial component of the velocity figure (6-2), this velocity in the
lower half of flow field is negative {toward the cylinder). In the upper half, the radial velocity
is positive. As it is clear, the flow field is divided into two zones at Z = 6. Considering figure
{6-b), the dimensionless axial component is pesitive in the left part of the flow field (adjacent
to the cylinder), while in the right pan it is negative {in downward direction).
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Bimesnduoless Radial Taloeicy

Flaure {6-2) Figure (6-b)
Figure (6) Contours of the dimensionless radial and axial components of the velogity.
Figure (7) shows the dimensionless temperature distribution at three different axial

positions. The first one is taken near the bottom
of the cylinder (Z=0.543), the second one is at "ml i

the middle of the cylinder (Z=2.5} and the third
curve is taken near the top end of the cylinder

_L=50, Ra={00 |

o
=

{(Z=4457). In general, the temperature decreases 5 &r‘[ 7 a8y l
continuously and rapidly near the cylinder wall § oeol c—e Ze2%0 g
(R=3 0), then slowly ull it takes an asymptatic g 'H",I — 1=038 i
value of zero at dimensionless radial distance of 3 0_40:,'; !
about nine. 5 U,I ’

Figure (8) shows the dimensioniess radial 0l - '
and axial components of velocity at the same L !
three  axial  positions. Considering the Lo o
dimensionless radial velocity, figure (8-a), near O Y 4 s 6789 1N1ZD1AIS
the botrom, the velocity adjacent to the cylinder dimamsionles i distue ( R )

decreases rapidly till it reaches a minimum value Figure (7) gj;l_mmﬂess bemmperature at
- . . erent adal positions

then it increases relatively slowly until il reaches

a value of zero. Atthe middlc of the cylinder, the behavior of velocity is similar 1o that near
the bortom of cylinder Near the lop, radial velocity increases rapidly till it reaches a
maximum vajue at R=3.0 lhen it decreases gradually till it reaches a value of zero.
Considering the dimersionless axial velocity [figure (8-b)] and for all axial positions, 1he
velocity in the zone adjacent ta the cylinder is positive (in upward direction). Then it
decrcases rapidly to a negative value. This value is smaller for lower values of the axial
position Finally, the axial velocity takes an asymptotic value of zera,

Four cylinders of dimensionless heights of 2.5, 5, 7.5 and 10 are examined in this
wark. In figure (9), the local Nusselt number for the cylinder of dimensionless height of 7 5 is
presented. The Nussell number goesto infinity at both ends of the cylinder for all values of
Rayleigh number, and then it decreases rapidly to smaller values, The wvalue of Nusselt
aumber at the lower half of cylinder is greater than that at the upper half. The average Nusselt
number for each cylinder for different values of Rayleigh number is calculated according to
the following definition;

1
L
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Figure (8) Dimensionless radial and axial velocity at different axial positions

A correlation of the average Nusselt number as function of both the Rayleigh number
and the dimensionless cylinder height was derived as;

Nu = 380 (Ra)*™" (L) (23)

Figure {10) shows a comparison between the calculated average Nusselt number and
thet caleulated from the forcgoing correlation, equation (23). This correlation fits the
calculated data better for higher values of dimensionless cylinder length (£). The effect of
Rayleigh number is very small compared with the effect of cylinder length, perhaps because
of the bigher weight of local Nusselt number at cylinder ends relative to that along the rest of
the cylinder height fsee figure (9)].

100 =
10 - z
- 90 = Yo=25
% g+ Dimensionks Cyinder HoghtL =73 ,
< o 2 - |
; - — - Ra=300 Z > ——=— Due ta present model
E 06— e -~ RanT0 'g 50_:_ = -~ = DuetoRegression
- l ——  Ra=100 -
% a4- Ra=10 Ry ;
T —— Ra-1 a H -
R - { B - FRY
. b . < R R
E 02 " 0 L=75 i
- wh L L=ipd :
Dr I \\-Q e —_ . o z N . 0 o ! |
00 20 40 60 R4 (00 120 (40 160 ¢ 35 10 13 20 25 30 35 40 43 3D
Lowal Nugselt Number  Hu ) Rayleigh Number
Figure (9) Local Nusselt aumber at Figure (10) Calculated average Nusselt
differcnt values of Rayleigh number number and that due to the correlation

Figure (11) shows a comparison between the present results and those of [8]. Since
the results of [8] ere obtained for an isothermal vertical surface, a qualitative comparison is
only poasible. Figure (I1-a) shows the dimensionless axial velocity obtained in the present
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work and that after [8]. The dimensionless axiel velocity in the present work is defined
according to equation (16) as, ¥V, =v,-r,/a, while in reference [8] it is defined as,
Vz=vw/V. . Where V, is a convective velocity givenby;, V. =g 8 (T, ~T,) K/v . Asitis
clear, both curves of the present work and of [8] have the same behavior, near the surface
they have their maximum value and then their velue decreases rapidly, thereafter the velocity
decreases slowly till it reaches an asymptotic value of about zero far from the surface. Figure
(11-b) shows the dimensionless temperature versus the distance normal to 1he surface (it is

radial in the present work). Both the dimensionless temperatures obtained in the present work
and that due to [8] have the same trend.

dimassanions distmee ¥ dimersponiess ro el datance Y

-1 (1§ -5 o oo an o an -+ ) oo [T ] am
o 10 L00 ¢ . . Sy
£ L3 .
> LN -
23— ~g8 > '
>, ~ = = Angsroee ad Pocmon |8) ; 0.8 ~ - - - - Angrama md Peoan [B)
- ———  procen work T L
%55— 08 g \ presat work
'; L - -;- 0.6 ~ 4
= AF ~04 .
8 i |
§ T : 0~
R -02 N
5 L N - T ; S

OL x“‘*—‘-"\--_—-:;‘ 0.0 0 \

2e—— — L 42 0.0 i ‘

10 15 29 8 p 14 1.0 1.3 20 13 10

d lewm ruclial dimsnce (R ) dirmeionion rdisl dmancs (1)
Figure (11-8) Figure (11-b)

Figure (11) Comparison between present results and those of reference [8]

Although the study of Wasel [9] is for the free convective heat traasfer from a long
¢ylinder, a comparison between the present work and that of [9] is presented in figure (12). It
is clear from figure (12-a) that, the values of Nusselt mumber in the case of the long cylinder
(L=10) are closer 10 those of [9]. Because of the long cylinder assumption made in [9], the
simplification of the governing equations by neglecting some terms of the original form of
those equations is, reasonably, possible. According to this simplification, a local similarity
solution for long cylinders is achieved. As it is clear in figure (12-b), his solution is aot valid
in case of cylinders of finite height, especially in case of higher values of Rayleigh number.

5. Conclusions

In this work, a theoretical model ia proposed to analyze the natural convection in a
porous medium. The effects of both Rayleigh numher and cylinder height are studied. A
correlation of average Nusselt number as a function of the cylinder height and Rayleigh
number is derived. In this model, no heat is transferred from both ends of the cylinder.
Accordingly, this model is more suitable for the case of relatively ong cylinders as well as
for the cylinders of insulated base and top.
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Figure (12) Comparison between the present results and those afler refrence {9]

Nomenclature
¥ dimensionless stream function, f=w / (a 2)
h hem transfer coefficient, h=¢, / (T, -T)
4 gravitatirnal acceleration
X permneability of porous medium
k thermal conductivity of fluid-saturated porous medium, k= ¢ &, + (1~ 8)k,
& thermal conductivity of fluid constituent
ks thermal conductivity of solid constituent
L dimensioniess cylinder height, L = I,
! cylinder height
Nu  local Nusselt number
Nu  average Nusselt number
r pressure
9o heat flux at cylinder wall
R Z dimensionless radial and axial coordinates
Ra  Rayleigh number based on eylinder radius, Ra=K g S ({T,-T.) r,/av
r.z  radial and axial coordinates
r cylinder radius
T temperature of fluid-saturated porous medium
T temperature of cylinder surface
T.  temperature of porous medium far from the surfhce

V. V: dimensionless radial and axial components of velocity
¥, v redial and axial components of velocity

Greek symbols

a

thermal diffusivity of homogenous porous medium, a =k /

pf CP;
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. . 1 ép
B coefficient of thermal expansion, #=- [ — 57 ),

#  porosity of porous medium, ¢ = pores volume / total volume
u,v  dynsmic and kinematic viscosity

# dimensionless temperature, (T ~ T}/ (T, - T,)

w Stream function
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