Mansoura University. Faculty of Engineering. Electrical Engineering Dept.

Second Semester. Date: 25/5/2013 Time: Three Hrs./Two-parts Full Mark: (55)

Final-Term Exam of (Electrical Machines I)

For 2nd Grad Electrical Engineering Dept. students.

الإمتحان من جز أبين: من فضلك أجب كل جزء من الامتحان في اتجاه مختلف من ورقة الإجابة.

Answer the following questions and assume any missing data:

Part (I)

Question № (1): (5+10 Marks)

<u>1-1</u>) <u>Numerate</u> the different types of dc. machines? <u>Draw</u> the circuit diagram and <u>write</u> the voltage equation of each type as motor and generator and <u>compare</u> their external characteristics.

<u>1-2</u>) <u>Calculate</u> the ampere-turns required for the tooth of dc. armature with the following dimensions:

Armature diameter = 656.3 mm; Core-outer diameter = 634.3 mm; Slot pitch flux = 10.715 mWb N_{2} of slots = 72 slots; Slot-width = 10 mm with parallel sides; Armature gross length = 350 mm;

№ of ventilating ducts = 5 each 1 cm wide; Iron space factor = 0.89.

The magnetization B-H curve for the material used is given by:

 $B = 3.77 \times 10^{4} H^{4} - 2.86 \times 10^{5} H^{3} + 8.12 \times 10^{5} H^{2} - 1.03 \times 10^{6} H + 4.86 \times 10^{5} H^{2}$

Question № (2): (5+10 Marks)

- 2-1) Explain clearly the reasons for the fall in terminal voltage of a dc. shunt generator as it is loaded. What modifications are necessary to compensate the voltage drop due to load and feeder?
- 2-2) The following data pertain to the magnetization curve of a D.C. shunt generator at 1500 r.p.m.

$I_f[A]$	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.0
E _a [V]	6	60	120	172.5	202.5	221	231	237	240

For this generator, *obtain*:

- (a) The voltage on open circuit which the machine will build up for a total shunt field resistance of 100 Ω .
- (b) The critical value of shunt field resistance at 1500 r.p.m.
- (c) The critical speed for the shunt field resistance of 100Ω .
- (d) The terminal voltage of the generator if the total armature resistance is 0.3 Ω , armature current is 50 A and the speed is 1500 r.p.m. Neglect armature reaction.
- (e) The external characteristic, maximum armature current and short circuit current.

Question № (3): (5+5+5 Marks)

- <u>3-1</u>) *Discus* the power flow inside dc machine, and deduce the efficiency equation. At what load does maximum efficiency occur?
- 3-2) Draw a neat diagram of a three-point starter, <u>label</u> its parts, and explain how it works. Also <u>explain</u> its defect and the protective devices therein.
- 3-3) A 4-pole, 250 V, 7.5 KW (output), wave-connected shunt motor has an armature resistance of 0.4 Ω and a field resistance of 125 Ω . *Estimate* the current taken by the motor on no-load if the full-load efficiency of the motor is 86%.

Page 1 of 2

Mansoura University

Faculty of Engineering Second Year Exam. Electrical Eng. Dept. Time: 1.5 Hours "ELECTRIC MACHINE FINAL-TERM EXAM PART (1)-2013" ANSWER FOUR QUESTIONS OF THE FOLLOWING:

1) (a) From the principle derive the transformer equivalent circuit parameters.

(b)A 20 KVA, 2200/220 V,50 Hz, single-phase transformer has the following equivalent circuit parameters referred to the high potential terminals

of the transformer. R_1 = 2.51 $\Omega,~R_2$ = 3.11 $\Omega,~X_m$ = 25100 $\Omega,~X_1$ = 10.9 $\Omega,~X_2$ = 10.9 Ω .

The transformer is supplying 15 KVA, 220 Volt at lagging power factor of 0.85. Draw the approximate equivalent circuit with its parameter values and determine;

- a) the primary potential difference required;
- b) the power factor at the primary terminals;
- c) the transformer maximum regulation;
- d) the transformer maximum efficiency if the constant losses= 900 watt ;
- e) draw the vector diagram with voltage scale 1:100. [14 pts]
- 2) (a) Draw the magnetizing current waveforms at no-load during the transient and steady- state periods. Derive the expression required to explain its nonlinearity.
 - (b) Three 10 KVA, 1330/250 V,50 Hz single-phase transformers are connected in star/ delta to form 3-phase transformer bank to supply at 250 volts line-to-line a heating load of 2 KW per phase and a three-phase load of 23 KVA at 0.8 lagging power factor. Determine the line current supplying the transformers, and the voltage regulation in the following both cases;
 - (i) the three single-phase transformers are considered ideal;
 - (ii) each one of the three single-phase transformer impedance is 0.118+j0.238 referred to low-potential side. However, the loads are connected to the 3-phase transformers bank by means of a common three-phase feeder whose impedance is $0.003+j0.010 \ \Omega$ per phase. Moreover, the 3-phase transformers bank themselves are supplied from a constant- potential source by means of a three-phase feeder whose impedance is $0.75+j5.0 \ \Omega$, per phase. [14 pts]
 - 3) (a) Discuss and drive all the expressions required to illustrate the transformer operation under the variable frequency source.
 - (b) the equivalent circuit parameters of the audio transformer are as following: $R_1 = 4 \Omega$, $R_2 = 0.40 \Omega$, $L_m = 35 \text{ mH}$, $L_{11} = 0.4 \text{ mH}$, $L_{12} = 0.045 \text{ mH}$, $N_1/N_2 = 5$.

The speaker resistive load = 4 Ω is connected to the transformer