Question (1): Sate whether the following statements are true or false

a) Every countable set is finite.
b) A convergent sequence has a unique limit.
c) The differential operator is a bounded operator.
d) Every subspace is a convex set and vice versa.
e) In a finite dimensional normed space, every linear operator is bounded.
f) All normed spaces are inner product spaces.
g) A contraction mapping is a continuous mapping.

Question (2): Define the following terms

a) The supremum of a bounded above set M.
b) Isometric mapping.
c) Open set.
d) Accumulation point.
e) Strict convexity.
f) Dual space.
g) Equivalent norm.
h) Total set.
i)Best approximation.

Question (3):

a) Is the subset of all $x, x=\left(a_{1}, a_{2}, a_{3}\right)$ with positive a_{1}, a_{2} and negative a_{3} constitute a subspace of R^{3} ?.
b) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in a metric space (X, d), show that $\left(a_{n}\right)$, where $a_{n}=d\left(x_{n}, y_{n}\right)$, converges.

Question (4):

a) If Y and Z are subspaces of a vector space X, show that $Y \cap Z$ is a subspace of X, but $Y \cup Z$ need not be one. Give examples.
b) Show that every finite dimensional subspace Y of a normed space X is complete.
c) If the composite of two linear operator exists, show it is linear.

Question (5):

a) What are the main advantages of orthonormal sequences over arbitrary linearly independent sequences?
b) Let X be an inner product space. Prove that for all x, y, and $z \in X$

$$
\|z-x\|^{2}+\|z-y\|^{2}=\frac{1}{2}\|x-y\|^{2}+2\left\|z-\frac{1}{2}(x+y)\right\|^{2} .
$$

c) For the operator $L=a_{0}(x) \frac{d^{2}}{d x^{2}}+a_{1}(x) \frac{d}{d x}+a_{2}(x)$, find L^{*} where $B u=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $B^{*} u=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Question (6):

a) Consider Fredholm integral equation $x(t)-\mu \int_{a}^{b} k(t, \tau) x(\tau) d \tau=v(t)$. Deduce the condition for this equation to have a fixed point according to Banach fixed point theorem.
b) Prove that in a normed space $(X,\| \|)$ the set M of best approximations to a given point x out of a subspace Y of X is convex.

