

Question (1): Sate whether the following statements are true or false

- a) Every countable set is finite.
- b) A convergent sequence has a unique limit.
- c) The differential operator is a bounded operator.
- d) Every subspace is a convex set and vice versa.
- e) In a finite dimensional normed space, every linear operator is bounded.
- f) All normed spaces are inner product spaces.
- g) A contraction mapping is a continuous mapping.

Question (2): Define the following terms

- a) The supremum of a bounded above set M.
- b) Isometric mapping.
- c) Open set.
- d) Accumulation point.
- e) Strict convexity.
- f) Dual space.
- g) Equivalent norm.
- h) Total set.
- i)Best approximation.

Question (3):

- a) Is the subset of all x, $x = (a_1, a_2, a_3)$ with positive a_1, a_2 and negative a_3 constitute a subspace of R^3 ?
- b) If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

Question (4):

- a) If *Y* and *Z* are subspaces of a vector space *X*, show that $Y \cap Z$ is a subspace of *X*, but $Y \cup Z$ need not be one. Give examples.
- b) Show that every finite dimensional subspace *Y* of a normed space *X* is complete.
- c) If the composite of two linear operator exists, show it is linear.

Question (5):

- a) What are the main advantages of orthonormal sequences over arbitrary linearly independent sequences?
- b) Let X be an inner product space. Prove that for all $x, y, and z \in X$

$$||z - x||^{2} + ||z - y||^{2} = \frac{1}{2}||x - y||^{2} + 2||z - \frac{1}{2}(x + y)||^{2}.$$

c) For the operator $L = a_0(x)\frac{d^2}{dx^2} + a_1(x)\frac{d}{dx} + a_2(x)$, find L^* where $Bu = \begin{bmatrix} 0\\0 \end{bmatrix}$ and $B^*u = \begin{bmatrix} 0\\0 \end{bmatrix}$.

Question (6):

a) Consider Fredholm integral equation $x(t) - \mu \int_{a}^{b} k(t,\tau)x(\tau)d\tau = v(t)$. Deduce

the condition for this equation to have a fixed point according to Banach fixed point theorem.

b) Prove that in a normed space (X, || ||) the set M of best approximations to a given point x out of a subspace Y of X is convex.