INCREASING PRODUCTIVITY THROUGH MECHANIZATION OF HANDLING

Farouk A. El Gayar, Ph. D.
Lecturer, Helwan University, Faculty of Eng. \& Technology.

ABSTRACT

Abstract

The main of the noncompetitiveness of the national industry is the low level of productivity in practicaliy every sphere of economy way from management to the workers including government. In this paper, a trial is done to save production time which is consumed in handiing of material. The cost of material can be reduced by proper selection, operation and layout of material handiing devices.

Through the suggested mechanization of the existing handilng system in an egyptian branch of industry, an increase of the output volume and a decrease the cost of production might he achieved.

In general the paper presents a systematic investigation of most factors which affect the efficiency and economy of the situation being reviewed.

INCREASIMG PRODUCTIVITY THROUGH MBCEANI ZATION
 OF RANDIING

Parouk A. El Gayar, Ph. D. Lecturer, Helwsn University, Paculty of Eng. \& Technolog's.

INRRODUCTIOX

The handing of materials, parts, and products is one of the major factors that affect the productivity of factories.

Handling.is non-effective from the product's point of view, and the management must do it's best to minjmize it as possible using the techniques of lay-out planning, work study, cost analysis, and performance evaluation.

This article is intended to outinne the solution procedure for developing a material handing system under realistic conditions.

The author feels that such a procedure as that described gives good (although perhaps non-optimal) solutions to the existing real problem, and helps in increasing productivity through the savings in production costs and the increasing of production rates.
Main points to be Considered in the study of Hendling Systems [1,2]
The following points must be considered in the analysis of any handilng system in order to achieve the above mentioned objectives:
Eliminating wasteful methods for handiling:

- All the unnecessary movements must be eliminated.
- When combinstion of operations is possible, it saves handling of materials.
- Using the gravity for handling mavas roney, effort, and time.
- Mechanaztion of handing methods can solve many problems of production lines and increase it's rate of output.
- we must compare between moving workers to parts and materiala, and moving the materials to workers.

Planning lay-out:

- Provide suitable and pernenant handing methoda.
- Principal aisles must exist to connect all the production steps with minimum distances.
- The layout must avoid cross-motions and back-motions as possible.

Applying proper equipments:

- Before buying new equipments, the existing ones must be used to it's maximum exficiency.
- The selection of handiing equipments must be on economic bases.
- The standardization of handing equipmenta for the whole plant is better (for scheduling, mantenance, and spare parts).
- Stand-by und te must exist to aroid delays.
- The economic size of hendilng mast be uaed in the calculation of equipment's capacity.
Coordinating \& facilitating operations:
- When more than one equipment is used for hendling; then the
activities of each of them must be coordinated with the other's.
- The utilization of equipment's capacity is a major point to be considered.
- Avoid - as possible - the handing from ground to m/c and from m / c to ground.
- Also, aroid mixing materials or products during handling.
- Storing methods must be coordinated with the handling equipments and stores capacity.
- Packaging methods and materials mast sult the handilng methods.

पse and Upkeep of Equipments:

- Employees must be trained on the suitable ways to use and operate the equipments.
- Safety requirements must be provided.
- A suitable programe for maintenance of the bandling equipments is necessary.
The Handling Problem to be Studied:
This study was carried out for the core section of the foundary of El Nasc Company for manufacturing steel pipes and fittings (Helwan, Egypt).

The foundary production represents a considerable part of the total production of this company.

It is an electronic casting foundary-shop producing standard units
of pipes fittings. These fittings are the main connection of diffferent sizes of pipes. Its work is a complementary process to that of the other factories of this company that produce pipes:

Accordingly, a great attention have to be paid to the increasing of the efficiency of this foundary and decreasing the costs of production of these fittings. One of the major area for achieving this goal is the handilng activities and how eflicientiy it is done.

This foundary has a core section using core blowers of high capcity (there are 12 core blowers placed in one raw along the wall of the section).

Although the production rate of this type of core blowers is 4 cores per minute (i.e. 1920 cores per 8 hours for each blower); only 17850 cores is the average production rate of this section.

This represents the capacity of only 9.3 machines (1.e. the effieiency of these machines is $9.3 / 12$ or 77% only). The reason was mainly the handling delays.

Handling was done by trolleys and 3 men servicing the 12 blowers and also the woricers that part the core moulds and that place the cores.

RESULTS OF TEE STUDY

The analysis of the handing methods in this section results a new system lor handling. The main leatures of this system can be realized as following :
We introduce a belt conveyor of 18 metres length, and 680 mns.width
and with a speed of 18 metres per minute.
Only one man is required to observe the handing rates and the conveyor.
As a result of improving the handling through this sugjested mechanised method, the workers of production operations are reduced from 30 to 12 only (one worker for each blower).

The following table represents the financial comparison between the existing method and the auggested one, and from it the reader can see how costs of production is reduced to only 43.1% of the present cost.
Old liethod Suggested method

$\begin{array}{ll}\text { 1. Output/shift } 17850 \text { Cores } & 21180 \text { Cores (}+18.5 \% \text {) }\end{array}$
$\begin{array}{lll}\text { 2. Efficiency } & 77.5 \% & 92 \% \\ \text { 3. Handing workers } & 3 & 1\end{array}$
3. Handling workers 3
5. Total cost/year: 17803 E
7675 \& (-56.9\%)
- Equipments
- Wages for hand- $3 \times 480 \mathrm{E}=1440 \quad 1 \times 480 \mathrm{i}=480$
$\frac{3000}{10} \times 1.05=315$
ling
- Wages for prod. $30 \times 540 \mathrm{E}=16200 \quad 12 \times 540 \mathrm{E}=6480$
- Maintenance for
handling equip. 100400

Data for the Above Calculations:

Price of trolley (in the old method)	200	
Price of the proposed conveying system	3000	c
Rate of interest	5%	
Depreciation period for equipments is	10 years	

Annual average wages :

- for handiling workers 480 \&
- for production workers 540 \&
The unit cost (Irom the above table) is :
17850 £/17850 cores x 250 shift per year $=.004$ £ for old method
but,
7675 e/21180 cores $\times 250$ shifts per year $=.00145$ ifor the sugges-
ted method.
(Taking into our comparison the cost of labor \& handling equipments
which are the varying costs of the core making operations in our
study).

This represents a decrease of 63.75% from these cost items per piece produced.

To Generalize the Economic Jomparison we Made Above:
Let the production rate is $P_{\text {old }}$ and $P_{\text {new }}$ for old method and new method respectively.
And the depreciation costs per year is also $D_{o l d}$ and $D_{n e w}$
And the wages for handling worker are $S_{o l d}$ and $S_{n e w}$
And that for production worker are $W_{o l d}$ and $W_{n e w}$
And number of worikers for handling \& production are H and C resp. And maintenance costs per year are Mold and Mnew
Then : .
Increased production rate is $P_{\text {new }}-P_{o l d} / P_{o l d}$
Saving in annual costs $=[M+S x H+W \times C+D(r+1)]$ old

$$
-[N+S x H+w x c+D(r+1)]_{\text {new }}
$$

saving in unit cost $=\frac{[M+S x H+W x C+D(x+1)]}{P_{o l d}}-\frac{[M+S x H+W x i+D(x+1)]}{P_{n e w}}$
(r refers to the annual rate of interest).
The above mentioned method was applied in case of the factory follows the simple interest. But, when the factory follows the usual computation by considering the compound rate of interest, the formula will take the following fom: $[3]$

Where :
$\mathbf{X}=$ Capital invested in handing equipment.
$\mathbf{n}=$ Service iffe of the equipment.
$\left(\mathrm{RPr}^{-n}\right)=$ Capital recovery Lactor.
Saving per unit $=\Delta z=z_{o l d}-z_{\text {new }}$.
If $\triangle Z$ is a non negative value, the policy of the mechanised system will be suggested.

COMCLUSIOK
This paper illustrates the outline of handing analysis and procedure of studying the methods of handing in the aim of raising the
efficiency of woricing plants.
It also illustrates a practical case of applying these proceiures and how it results a significant saving in production costs and increase in production rates.

Also it introduces a simplified pattern for cost comparisons which are the base for deciding the use of changing handling systems and mechanizing it. Unless there is a considerable saving in the costs and/or increase in the output, it is not needed to make such changes.

Of course the problems of handiing are affected bj many variables and need to take into account all the related techniques and methods of manufacturing, storing, packaging, and even methods of production control and supervision. Jut the general frame of studies that this paper illustrate remain applicable and of great value in this field.

REFEREMCES

1. J.F. Smith, "Productivity Through Material Handing", Proceedings of first jeminar on material handling and industrial engineer, Pettsburg, 2-4 March, 1976.
2. A. Reed, "Material Handilng Coat Factors", Proceedinga of first Seminar on material handiing and industrial emgineex, Pettsburg, 2-4 March, 1976.
3. De. Garmo, "Engineering Economy", Mackmilan, 1969.
