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ABSTRACT: 

The main goal of this research is to develop one dimensional unsteady and nonequilibrium numerical sediment 

transport models for alluvial channels. Three mathematical and numerical models have been developed using 

kinematic, diffusion and dynamic wave approaches for simulating bed profiles in alluvial channels for unsteady 

and equilibrium conditions. Transient bed profiles were also simulated for several hypothetical cases, comparing 

different particle velocities and different particle fall velocities. Also different wave models (kinematic, diffusion 

and dynamic) were compared. The kinematic wave model was developed for simulating transient bed profiles in 

alluvial channels under unsteady and nonequilibrium conditions and tested with hypothetical data. The diffusion 

wave model was developed for simulating transient bed profiles in alluvial channels under unsteady, nonuniform 

and nonequilibrium conditions. It was found that the numerical comparison of kinematic, diffusion and dynamic 

wave for hypothetical cases of sediment transport revealed under the same sediment flux function of the 

wavefront is slower in the case of kinematic wave 
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1. Introduction  

The management of soil and water resources is one of 

the most critical environmental issues facing many 

countries. For that reason, dams, artificial channels 

and other water structures have been constructed. 

Management of these structures encounters 

fundamental problems: one of them problems is 

sediment transport.  

Sedimentation and soil erosion are some of the 

modern world’s environmental topics. These problems 

have been studied for centuries by engineers. There 

are many different approaches for solving these 

engineering problems. Sediment deposition deals with 

water and sediment particles so, the physical 

properties of water and sediment particles should be 

studied to understand sediment transport mechanism. 

Sediments are transported as suspended and bed load 

depending upon fundamental properties of water and 

sediment particle size, density, etc. 

In a river system, loose bed surface can be eroded 

from a river basin by water and be transported by 

stream. Sediment particles can be transported in four 

modes rolling, sliding, saltation and suspension. 

While sediment particles are sliding and rolling, 

particles continue to be at contact with the bed. 

Saltation means jumping motion along the bed in a 

series of low trajectories. Rolling and sliding particles 

move along the bed surface under the force of the 

overlying flow of water. It is often unimportant to 

distinguish saltation from rolling or sliding because 

saltation is restricted to a height of only a few grain 

diameters (Dyer 1986).  

A saltating grain may only momentarily leave the bed 

and rise no higher than a few (<4) grain diameters. 

These three modes called bed load transport. 

Sometimes sediments stay in suspension for an 

appreciable duration called suspended load transport. 

Suspension of a sediment particle is one of the modes 
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in water systems that occur when the magnitude of the 

vertical component of the turbulent velocity is greater 

than the settling speed of the particle. Bagnold (1966) 

argued that the major distinction in sediment transport 

modes is between suspended and unsuspended (bed 

load) transport. 

Bed load sediment grains and aggregates are 

transported under the combined processes of saltation, 

rolling, and sliding, and receive insufficient 

hydrodynamic impulses to overcome gravitational 

settling. Their only significant upward impulse is 

derived from successive contacts with the bed (Dyer 

1986). When the flow conditions satisfy or exceed the 

criteria for incipient motion, sediment particles along 

an alluvial bed will start to move (Yang 1996). 

Sediment related disasters such as debris flow, 

landslides and slope collapses are known to occur 

naturally, causing social and economic problems in 

the world. Human civilizations studied sediment 

transport to reduce the damages of disasters and to 

maximize the benefits of water resources structures. 

The studies of the sediment transport can be classified 

in two categories; physical studies that that are related 

to extensive flume and field observations. 

Mathematical studies that are related to the 

development theoretical and numerical methods. 

Physical studies are performed by conducting 

experiments in laboratory flumes or by taking field 

observations. It is difficult to represent a river by a 

laboratory flume; so many assumptions are usually 

incorporated in laboratory studies. Many investigators 

have developed empirical methods to represent 

sediment transport phenomena using data obtained in 

laboratory, such as Guy, et al. 1966, Langbein and 

Leopold 1968, Soni 1981, Wathen and Hoey 1998, 

Lisle, et al. 1997, Lisle, et al. 2001. 

To study the sediment transport mechanisms, many 

investigators developed mathematical equations for 

real life situations. All the sediment transport 

mathematical models developed so far are based on 

five basic physical equations. These equations have 

been developed by many researches that can be solved 

both analytically and numerically. 

2. Bed Load Transport Formulas 

Bed load motion starts when the critical conditions are 

exceeded. The motion concerns with two phases (solid 

+ liquid) flow near the bed. Generally, the bed load 

transport rate of a river is about 5-25% of that in 

suspension. Bed load measurement is difficult, so it is 

estimated by sediment transport formulas based on 

different modes of motion employing different 

parameters, including shear stress and flow velocity. 

The approaches for predicting bed load are briefly 

summarized as follows: 

2.1 DuBoys Approach 
Duboys (1879) developed a bed load model using a 

shear stress approach. This model consists of sediment 

particles moving in layers due to the tractive force 

acting along at the bed. The bed load capacity 

formula is given as; 

 

                                       (1) 

 

where; Straub (1935) defined K as a coefficient that 

depends on the sediment particle characteristics as: 

 

                                                        
(2) 

 

Thus, DuBoys equation can be rewritten as, 

 

                                 
(3) 

 

where, 

ds =sediment particle diameter in mm; 

τ and τc = bed and critical shear stress respectively in 

Ib/ft
2
; and 

qb = bed load transport capacity in (ft
3
/sec)/ft. 

2.2 Meyer – Peter’s Approach 
Meyer-Peter et al. (1934) developed the following 

bed load formula using the energy slope approach in 

metric system; 

                                 
(4) 

where, 

qb =bed load [in (kg/s)/m]; 

q =water discharge [in (kg/s)/m]; 

S =slope; and 

ds =particle size (in m). 

Meyer – Peter formula is valid only for coarse 

material sediment particle diameters greater than 3 

mm. For mixtures of non uniform material, d should 

be replaced by d 35 , where 35% of the mixture is 

finer than d 35 (Yang 1996). 

2.3 Schoklitsch Formula 
Schoklitsch developed two bed load formulas which 

were developed from discharge approach. The first 

was published in 1934 in metric units. 

 

                             
(5) 

 

where, 



Mohammed G. Abd Alla "MATHEMATICAL AND NUMERICAL MODELIN...."  

Engineering Research Journal, Minoufiya University, Vol. 37, No. 1, January 2014 27 

q and qc =water discharge and critical discharge at 

incipient motion [in m
3
/s)/m] respectively 

For sand with specific gravity 2.65, critical water 

discharge can be calculated by plotting for a given 

flow and grain diameter curve of bed load as ordinate 

against slope as abscissa and then extrapolating the 

curve to zero bed load to obtain the intercept with 

abscissa. 

 

                                  
(6) 

 

The second bed load formula that was published in 

1943 in metric units as: 

 

                                
(7)     

 

2.4 Shields Approach 

Shields (1936) conducted laboratory studies and 

obtained the flow conditions corresponding to 

incipient motion when sediment transport was greater 

than zero. Shield’s measurements provided semi 

empirical equation for estimating bed load transport 

capacity (with English units); 

 

                               
(8) 

 

2.5 Meyer – Peter and Müller’s Approach 
Meyer-Peter and Müller (1948) transformed the 

Meyer-Peter bed load formula by isolating the 

involved parameters one by one as follows: 

 

 
                                                                                        

(9) 

(Ks/Kr) S = the kind of slope which is adjusted for 

energy loss due to grain resistance, and 

                                                 
(10) 

  

2.6 Regression Approach 
Rottner (1959) expressed bed load discharge in terms 

of the flow parameters based on regression analysis. 

The formula is dimensionally homogeneous (Yang 

1996). 

 

 
                                                                                   

(11) 

where, 

 

ξs =specific gravity of the sediment (=2.65) 

2.7 Chang, Simons and Richardson’s Approach 
Chang, Simons and Richardson (1965) suggested that 

the bed load discharge by weight can be determined 

using a shear stress approach; 

 

 
                                                                                 

(12) 

 

 

                                     
(13) 

 

Kt = obtained by graph in English unit; and 

υ = angle of repose of submerged material 

3. Suspended Formulas 

Settling velocities are balanced by upward component 

of turbulent velocity and stays in suspension. While 

particles fall, some of them are carried away with 

high flow velocity and then returning near the bed 

region. Others particles caught in an upward moving 

eddy are lifted again. The higher the turbulence, the 

smaller the particle size and the greater the portion of 

the particles is lifted up. Thus some sediment is kept 

in suspension. Some basic suspended load approaches 

are summarized as Rouse Equation, Lane and 

Kalinske’s approach, Einstein’s approach. 

4. Total Load Transport Formulas 

Total sediment load includes both bed load and 

suspended load. The transported total bed material 

also consists of bed material load and wash load. 

However methods for calculating the bed material 

load and wash load are different. The wash load is 

estimated by measurements but since the bed surface 

is changing with incoming flow continuously, it is 

difficult to predict the wash load in rivers. When 

comparing the measured and computed total bed load, 

wash load should be removed from measurements.  
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5. One Dimensional Hydrodynamic Model 
The hydrodynamic model is described by equations of 

motion in open channel flows. The flow model is 

developed to solve governing equations based on 

conservation of mass and momentum. The flow depth 

and velocity of flow are sufficient to define the flow 

conditions at a channel cross section, so two 

governing equations can be solved for a typical flow 

situation. 

In this part, the continuity and momentum equations 

are derived that are usually referred to as the Saint 

Venant equations. 

5.1 De Saint Venant Equations 
The one dimensional modeling of unsteady flow in 

open channels is most often performed by 

supplementing de Saint Venant equations that 

describe the propagation of a wave. In an unsteady 

modeling, two flow variables, such as the flow depth 

and velocity or the flow depth and the rate of flow are 

calculated to define the flow conditions at a channel 

cross section. Therefore, two governing equations 

must be used to analyze a typical flow situation. The 

required equations are the continuity equation and the 

momentum equation derived with many assumptions 

(Roberson, et al. 1997, Chaudhry 1993): 

● The streamlines do not have sharp curves, so that 

the pressure distribution is hydrostatic. 

●As the channel bottom slope is small, the measured 

lateral and vertical velocity are approximately same, 

so the lateral velocity and acceleration component can 

be neglected. 

●No lateral, secondary circulation occurs. The flow 

velocity distribution is uniform over any channel cross 

section. 

●The channel is prismatic with the same cross section 

and slope thorough out the distance.  

●The head losses in unsteady flow can be simulated 

by using the steady – state resistance laws, so Chezy 

and Maning equations can be used also in unsteady 

flow model. Water has uniform density and flow is 

generally subcritical (Chaudhry 1993). 

5.1.1 Continuity Equation in Unsteady Flows 
According to the law of conservation of mass, both 

the difference of the rate of mass inflow through area  

dA1 at section 1 and the rate of mass outflow through 

area dA2 at section 2 and the lateral inflow or outflow 

though Δx in the same time space dt, must be equal to 

the change of volume. 

 

 

 
 

Figure1. Definition sketch for continuity equation 

 

So, 

 

 
                                                                                    

(14) 

where, 

M =mass; 

A =flow area; 

V =flow velocity; 

ρ = mass density of water; and 

q 1=volumetric rate of lateral inflow or outflow per 

unit length of the channel between sections 1 and 2. 

(inflow q1 is positive, outflow q 1 is negative). 

 

5.1.2 Momentum Equation in Unsteady Flows 
 

The second required equation is derived by 

considering how the forces on the control volume 

affect the movement of water through the control 

volume. The momentum equation states that the rate 

of change of momentum is equal to the resultant force 

acting on the control volume as: 

 

 
dt

mvd
F                                                      (15) 

 

In Figure 2 there is an element which has mass m and 

length Δx. The rate of changing of total momentum 

for that element for the uncompressible flows is, 

 

 
 

                                                                                 

(16) 

where, 
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Vx =the component of the velocity of lateral inflow in 

the x – direction; and 

q1 = is positive in lateral inflow and negative in lateral 

outflow. 

 

 

 
Figure 2. Definition sketch for momentum equation. 

 

For steady uniform flow, the friction slope is equal to 

channel bottom slope. The equation for steady, 

gradually varied flow is obtained by including the 

variation of the flow depth and velocity head by 

including the derivative with respect to distance x . 

The unsteadiness or the local acceleration term is 

needed to make the equation valid for unsteady 

nonuniform flow model as: 

 

 
                                                                                          

(17) 

de Saint Venant equations are nonlinear equations for 

which numerical methods are required to solve them, 

so they were not practically applied in their full 

hydrodynamic form until the 1950s, although they 

were derived in the early nineteenth century. A 

number of simplifications were performed by different 

researchers, being more appropriate in particular 

situations. Consideration of the implications of the 

different simplifications can also lead to a better 

understanding of the full equations, so de Saint 

Venant equations were described by the propagation 

of a wave. In wave approximations, the continuity 

equation is solved simultaneously with the 

approximate form of the momentum equation. Their 

differences are all in the momentum equation 

assumptions. The three types of simplifications for 

wave models studied in this research are summarized 

below. 

5.2. Kinematic Wave Approximation 
The kinematic wave approximation represents the 

change of flow with distance and time by neglecting 

the local and convective acceleration terms of the 

momentum equation. The assumption is that the water 

surface is parallel to the channel bed (uniform flow 

assumption) in the kinematic wave approximation. It 

means there is no way to represent backwater effects. 

These assumptions reduce the momentum equation 

to: 

 

S0 = Sf                                                                              

(18) 

 

The remaining terms represent the resistance equation 

for steady, uniform flow as described by Manning’s 

or Chezy’s equation but the effects of unsteadiness by 

an increase or decrease in the flow depth can be taken 

into consideration. 

5.3 Diffusion Wave Approximation 
The diffusion wave approximation is a simplified 

form of the dynamic wave approximation. In 

addition, it is a significant improvement over the 

kinematic wave model. In the diffusion wave 

approach, the ∂h/ ∂t term from de Saint Venant 

equation allows the water surface slope to differ from 

the bed slope. This pressure differential term allows 

the diffusion model to describe the attenuation of the 

flood wave. It also allows the specification of a 

boundary condition at the downstream extremity of 

the routing reach to account for backwater effects. 

The simplified form of the momentum equation 

includes the convective acceleration term 

representing the spatial change in the flow depth as 

well as the source terms, but neglects the temporal 

derivative term as well as the convective acceleration 

terms due to spatial change in the flow velocity 

(Chaudhry 1993). The simplified form of the 

momentum equation is, 

 

                                               
(19) 

 

 

 

 

Combining the simplified momentum equation with 

the continuity equation gives the single equation 

called the diffusion wave equation. 
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(20) 

where, 

 

 
 

5.4 Dynamic Wave Approximation 
The dynamic wave equations are the most accurate 

and comprehensive solution for one dimensional 

unsteady flow problems in open channels under the 

specific assumptions. They can be applied to wide 

range of one dimensional flow problems such as dam 

break flood wave routing, evaluating flow conditions 

due to tidal fluctuations, and routing flows through 

irrigation and canal systems. The full equations can be 

solved by several numerical methods for incremental 

times t and incremental distances x along the water 

way. The specific terms in the momentum equation 

are small in comparison to the bed slope. In dynamic 

wave approximation, the continuity equation is solved 

simultaneously with the approximate form of the 

momentum equation. The full dynamic wave 

approximation can be defined by, 

 

           
(21) 

where, 

u =the flow velocity (L/T) 

h =the flow depth (L) 

S f = friction slope 

t =independent variable of time (T) 

x = independent variable representing the coordinate 

in the longitudinal direction (flow direction) (L) 

6. One Dimensional Sediment Transport Model  

The bed of the channel may aggrade or degrade in 

natural streams if the balance of the water discharge or 

sediment is destroyed by natural or manmade factors. 

Eroding loose surfaces from the basin by water 

deteriorates the ecology and changes the river 

morphology. The water level rises and brings 

ecological problems when sediments are deposited in 

river basins. It is essential to predict the effects of 

sediment transport for river management. Current 

research on river sediment transport prediction is 

mainly based on numerical modeling of sediment 

transport. One dimensional unsteady sediment 

transport models were studied in two categories in this 

research: equilibrium and nonequilibrium. 

6.1 One Dimensional Numerical Model for 

Sediment Transport under Unsteady and 

Equilibrium Conditions 

Bed material transportation is mathematically divided 

into two independent processes: erosion and 

deposition. When the erosion and the deposition rates 

are equal then there is equilibrium. It means that there 

is no interchange of sediment particles between 

suspended and bed load sediment transport (Tayfur 

and Singh 2007). The equilibrium condition exists 

when the same number of a given type and size of 

particles are deposited on the bed as are entrained 

from it. In the literature, most of the studies are based 

on equilibrium approach although natural rivers are 

mostly in nonequilibrium state. When flow and 

sediment discharges, channel geometry and sediment 

properties do not change substantially for a long 

period of time, assuming the equilibrium sediment 

transport conditions is appropriate. 

 Kinematic Wave Model of Bed Profiles in Alluvial 

Channels under Equilibrium Conditions 
The kinematic wave model neglects the local 

acceleration, convective acceleration and pressure 

terms in the momentum equation for dynamic wave 

model.  

Tayfur and Singh (2006) represented transport 

movement in wide rectangular alluvial channels as a 

system involving two layers: water flow layer and 

movable bed layer, as shown in Figure 3. The water 

flow layer may contain suspended sediment. The 

movable bed layer consists of both water and 

sediment particles, so the movable bed layer includes 

porosity. The basic one dimensional partial 

differential equations for unsteady and equilibrium 

nonuniform transport can be expressed as (Tayfur and 

Singh 2006): 

 

 
 

Figure 3. Definition sketch of two layer system. 

(After: Tayfur and Singh 2006) 
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 Numerical Solution of Kinematic Wave Equations 
In this model, a finite difference scheme developed by 

Lax (1954) is used. This scheme can capture shocks, 

since all the governing equations are solved 

simultaneously. 

There is no need for iterations when gradients are 

large. The Lax scheme is an explicit scheme and does 

not require large matrices, so it is easy for solving 

general empirical equations for roughness and 

sediment discharge. With reference to the finite 

difference grid as shown in Figure 4, the partial 

derivatives and other variables are approximated as 

follows. 

 

 
 

Figure 4. Finite difference grid 

 

 

 
                                                                                   

(22) 

and then,  

 

 
                                                                                 

(23) 

 

and, 

 
                                                                                (24) 

 

Then, the hydrodynamic part of the model is: 

 

 

 
                                                                         (25) 

 

The initial conditions can be specified as: 

 

 
 

where, 

 

h0 and z0= the initial flow depth (L) and the bed level 

(L), respectively. 

The upstream boundary conditions can be specified as 

inflow hydrograph and inflow sedimentograph. 

 

 

 
 

The downstream boundary conditions can be 

specified as: 

 

 
 

 Model Testing for Hypothetical Cases 
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The hypothetical cases were analyzed assuming an 

inflow hydrograph and sediment concentration at the 

upstream of the channel, shown in Figures 5a and 5b.  

The channel was assumed to have a 1000 m length 

and 20 m width with 0.0025 bed slope. Chezy 

roughness coefficient is 50 m 
0.5

 /sec. The sediment 

was assumed to have ρs= 2650 kg/m
3
, d s = 0.32 mm, 

p = 0.48 and sediment transport capacity coefficient κ 

= 0.000075 (Ching and Cheng 1964). Langbein and 

Leopold (1968) suggested C max = 245 kg/m
2
. In 

Figure 4.3b, C b = 14 kg/m
2
 corresponds the bed level 

z = 0.01 m and C b = 140 kg/m
2
 corresponds the bed 

level z = 0.10 m. 

 

 
 

 
 

 

Figure 5. (a) Inflow hydrograph (b) Inflow 

concentration 

 

 Hypothetical Case I: Effect of Inflow 

Concentration 
Figure 6a shows that when the inflow concentration 

increases at the upstream end of the channel, bed level 

gradually increases. In the Figure 6b when the 

equilibrium feeding of the sediment occurs at the 

upstream, the bed level continues to increase along the 

channel length. During the recession limp of the 

inflow concentration the bed level starts to decrease 

toward the 10% length of the channel while it 

increases, toward the 90% length of the channel 

(Figure 6c). Figure 6d shows that the bed level 

decreases to the original level at the upstream section 

but as time progresses it increases toward the 

downstream section. 

 

 

 
 

 

 
 

Figure 6. Transient bed profile at (a) rising period (b) 

equilibrium period (c) recession period (d) post 

recession period of inflow hydrograph and 

concentration 

 Hypothetical Case II: Effect of Particle Velocity 

and Effect of Particle Fall Velocity 
The objective of this case was to compare the 

sediment particle velocity and particle fall velocity 

formulations employed in the developed model. The 

fall velocity must be obtained for calculating the 

particle velocity. 

In Figures 7a, 7b and 7c it is seen that while Kalinske 

(1947) and Bridge and Dominic (1984) formula give 

a faster wavefront, and Chien and Wan (1999) 

formula give slower wavefront in rising and 

equilibrium period. At recession period, as the 

sediment feeding decreases the bed elevation starts to 

decrease toward the upstream section (in 20% of the 

channel length) under constant vs  = 0.01 m/s. It is 

seen that Kalinske (1947) and Bridge and Dominic 

a 

d 

c 

b 

b 

a 
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(1984) formula give similar performance and 

sediment moves faster towards downstream end. This 

is reasonable, since the transient bed profile moves 

downstream and thus concentration also increases 

downstream (Figure 7c). In the postrecession period, 

the bed level increases to original bed level at the 

upstream section. It is seen that bed profile reached 

original bed early with Kalinske (1947) and Bridge 

and Dominic (1984) formula (Figure 7d) (Bor, et al. 

2008). 

The same simulations were obtained under the other 

three fall velocity formulations. 

 

 

 

 

 

 

 
 

 
 

Figure 7. Transient bed profile under different 

particle velocities at (a) rising period (b) equilibrium 

period (c) recession period (d) postrecession period of 

inflow hydrograph and concentration. (After: Rouse 

1938, Dietrich 1982, Yang 1996 formula). 

 

 
 

a 

b 

c 

d 

d 

c 

b 
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Figure 8. Transient bed profiles under different fall 

velocities at (a) rising period (b) equilibrium period 

(c) recession period (d) postrecession period of inflow 

hydrograph and concentration.  

 

 

 

 

 

 

 

 

 

 

 

Figures 8a, 8b and 8c demonstrate the effect of the fall 

velocity on the sediment transport under the different 

particle velocity formulations is shown. (Rouse 1938) 

gave nearly the same results under the Bridge and 

Dominic (1984), Kalinske (1947), and Chien and Wan 

(1999) particle velocity formulation. For better 

assessment, the model must be tested with 

experimented results (Bor, et al. 2008).  

The same simulation profiles were obtained under the 

other three particle velocity formulations. 

 Model Testing: Comparing the Kinematic, 

Diffusion and Dynamic Models for Hypothetical 

Cases 

For the three of wave solutions, a Courant number of 

0.2 was selected. The numerical solutions are plotted 

for  x = 200 m , x = 500 m and x = 800 m along the 

channel, respectively (Figure 9 and Figure 10). By 

comparing Figures 9a, 9b and 9c, one can observe the 

different behavior of the diffusion and kinematic 

waves, particularly at peak flow points. The diffusion 

wave reaches faster to maximum flow rate. On the 

other hand, the dynamic wave has a smaller peak than 

the diffusion wave (Figure 5.9a, 5.9b and 5.9c) and 

kinematic wave has the smallest. It can be said that 

particle velocity is higher in diffusion and dynamic 

wave models. Results are acceptable with 

Kazezyılmaz et al. (2007). 

 

 
 

 

 
 

Figure 9. Comparison of numerical solution of 

Diffusion and Kinematic waves at distance (a) x = 

200 m (b) x = 500 m (c) x = 800 m of the channel 

(a) 

(b) 

c)) 
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Figure 10. Comparison of numerical solution of 

Dynamic, Diffusion and Kinematic waves at distance 

(a) x = 200 m (b) x = 500 m (c) x = 800 m (assuming 

clear water (c = 0)). 

 Hypothetical Case III: Comparing Three Bed 

Load Formulas under Kinematic and Diffusion 

Wave Models 
The objective of this case is to compare the bed load 

transport formulations employed in the developed 

model. For that reason, three bed load formulations 

were selected from the literature. The formulations are 

Meyer – Peter (1934), Schoklitsch (1934) and Tayfur 

and Singh (2006) bed load formulations. First of all, 

the formulations were tested under the kinematic wave 

model. While Meyer – Peter and Schoklitsch formula 

gave similar performance, Tayfur and Singh formula 

gives different performance (Figures 11a and 11b). 

The sediment particles moved downstream faster 

under Tayfur and Singh formula. The second test was 

under the diffusion wave model, where the same 

behavior was observed (Figures 12a and 12b). 

 

 
 

 

 
 

Figure 11. Comparison of Tayfur and Singh, Meyer – 

Peter and Schoklitsch bed load formulations, (a) 

under Kinematic wave model at time 160 min. (b) 

under Kinematic wave model at distance x = 200m of 

the channel. 

 

 

(b) 

(a) 

(a) 

(b) 

a)) 

b)) 

(c) 
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Figure 12. Comparison of Tayfur and Singh, Meyer – 

Peter and Schoklitsch bed load formulations, (a) under 

Diffusion wave model at time 160 min. (b) under 

Diffusion wave model at distance x = 200m of the 

channel. 

It is seen that while Mayer – Peter (1934) and 

Schoklitsch (1934) formulas gave the same 

performance, Tayfur and Singh (2006) gives different. 

Sediment moves faster towards under Tayfur and 

Singh (2006) formula. 

6.2 One Dimensional Numerical Model for Sediment 

Transport under Unsteady and Nonequilibrium 

Conditions 
All the sediment transport functions or equations 

presented earlier have been intended for the estimation 

of bed levels at the equilibrium condition with no 

scour or deposition, at least from a statistical point of 

view. It has been assumed that the amount of wash 

load depends on the supply from the upstream and is 

not a function of the hydraulic conditions at a given 

station. Also, the amount of wash load is not high 

enough to significantly affect the fall velocity of 

sediment particles, flow viscosity or flow 

characteristics in a river in comparison with these 

values in clear water. When the wash load or 

concentration of fine material is high, non equilibrium 

bed material sediment transport may occur. The floods 

may cause heavy erosion and landslides in a river 

basin causing sediment overloading within a river 

reach. During the aggradation and degradation 

process, there may be an exchange of sediment 

particles between bed layer and suspended layer 

exceeding the flow capacity. The nonequilibrium 

sediment transport condition results in an unstable 

streambed elevation. In such cases, a numerical 

sediment transport model provides the computational 

framework for analysis. There are significant 

differences between the calculations of equilibrium 

and nonequilibrium conditions. The nonequilibrium 

condition solution can be obtained by numerical 

sediment modeling using control volume approach. 

 Governing Equations 
Tayfur and Singh (2007) studied transport movement 

in a wide rectangular alluvial channels represented in 

two layers. Figure 13 shows the possible exchange of 

sediment between the two layers: the water flow layer 

and the movable bed layer, depending upon flow 

transport capacity and sediment rate in suspension. 

 

 

 
 

 

Figure 13. Definition Sketch of two layer system in 

nonequilibrium condition (After: Tayfur and Singh 

2007). 

 (assuming clear water c = 0) and an equation for 

conservation of suspended sediment in the water flow 

layer as: 

 

 
                                        (26) 

where, 

 

Vx = the sediment mixing coefficient; and 

η = coefficient 

The kinematic wave equations for modeling unsteady 

state, nonuniform transient channel bed profiles under 

nonequilibrium conditions are: 

 

 
(27) 

 
(28) 

For calculating the detachment rate  Ez , the shear 

stress approach was used (Yang 1996); 
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where, 

 

σ   = the transfer rate coefficient (1/L); 

T      = the flow transport capacity (M/L/T); 

Φ  = the soil erodibility coefficient; 

τ   = the shear stress (M/L
2
); 

τcr = the critical shear stress (M/L
2
); and 

k      = an exponent 

 Model Application 
The channel was assumed to have a 1000 m length 

and 30 m width with 0.0015 bed slope. 

Chezy roughness coefficient is assumed to be Cz=36 

m 
0.5

/s. The sediment was assumed to have ρ s = 

2650kg /m
3
, ds = 0. 32 mm and p = 0.528. Maximum 

concentration was assumed C max = 500 kg / m
2 

.Gessler (1965) suggested a value of 0.047 for κ for 

most flow conditions. The value of transfer rate can be 

calculated in flumes by σ = 1/ (7h), where h is flow 

depth, parameter Φ has a range of 0.0 – 1.0 and 

exponent ki has a range of 1.0 – 2.5 in the literature 

(Foster 1982, Tayfur 2002, Yang 1996). The inflow 

hydrograph and inflow concentration are given in 

Figure 14 for upstream boundary conditions. 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 14. (a) Inflow hydrograph. (b) Inflow 

concentration. 

Figures 15a-15d present bed profiles during the rising 

limp, equilibrium, recession limb and postrecession 

limp of the inflow hydrograph and concentration, 

respectively. It is seen that while inflow concentration 

increases, the bed level gradually increases in the 

upstream and it decreases after about 200 m in the 

downstream (Figure 15a). The bed elevation 

continues to increase in the equilibrium period at the 

upstream end (Figure 15b).  

 

 
 

 

 
 

 

 

 

 
 

(a) 

(b) 

(C) 
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Figure 15. Transient bed profile at (a) rising period 

(b) equilibrium period (c) recession period (d) post 

recession period of inflow hydrograph and 

concentration. 

 Model Testing: Comparing the Equilibrium and 

Nonequilibrium models for Hypothetical Cases 

 

The hypothetical cases were analyzed assuming an 

inflow concentration hydrograph at the upstream of 

the channel as shown in Figure 16. The channel was 

assumed a flume and to have a 20 m length and 1 m 

width with 0.0001 bed slope. 

The sediment was assumed to have ρs = 2650 kg/m
3
, 

ds = 0.09 mm, p = 0.45 and sediment transport 

capacity coefficient κ = 0.000075 (Ching and Cheng 

1964). Langbein and Leopold (1968) suggest C max = 

500 kg/m
2
. The water discharge is Q = 0.5 m

3
 / s at the 

beginning. In equilibrium part Q = 1 m
3
 / s (in 

trapezoidal). For the two model solutions a Courant 

number of 0.2 was selected. The numerical solutions 

are plotted for x = 500 m along the channel (Figure 

17). It is clear from the figure that the different 

behavior of the equilibrium and nonequilibrium 

model, particularly at the peak flow points. The 

equilibrium model reaches the maximum flow rate 

faster. On the other hand, the nonequilibrium model 

has a smaller peak. It can be said that bed material 

decreases when the suspended sediment increases. 

 

 
Figure 16.  Inflow concentration 

 

 

 

 
 

 

Figure 17. A comparison between the equilibrium 

and nonequilibrium models 

6.3 One Dimensional Numerical Model for 

Nonuniform Sediment Transport under Unsteady 

and Nonequilibrium Conditions 
One dimensional sediment transport models are 

simulated in non uniform gravel bed in this section. In 

this part, the proposed one dimensional model 

simulates the nonequilibrium sediment transport of 

nonuniform total load under unsteady flow conditions 

in rivers. For this reason, de Saint Venant equations 

are solved for complex materials. The models 

simulated suspended sediment transport using the 

nonequilibrium transport approach. In this research, 

the mathematical model is developed using diffusion 

wave theory under nonequilibrium condition. The bed 

profile evolution of complex gravel in alluvial 

channels is presented in Figure 18. 

 

 
Figure 18.Multiple – layer model for bed load 

column 

 Governing Equations 

The conservation of mass for suspended sediment in 

the water flow layer and the conservation of mass for 

bed sediment in the movable bed layer separately 

could be written for nonuniform and nonequilibrium 

sediment transport; 

 

(d) 

Equilibrium 

Non Equilibrium 
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(29) 

 
(30) 

where, 

Ck = section – averaged sediment concentration of size 

class k 

E zk = the detachment rate of size class k (M / L
2
 /T) 

Dck = the deposition rate of size class k (M / L
2
 /T) 

q bsk = the sediment flux in the movable bed layer of 

size class k (L2 /T) 

(∂z/ ∂t) k= bed change rate corresponding to the k 
th

 

size class of sediment 

P k = bed material porosity of size class k 

 Model Application 
The channel is assumed to be as a flume that has 20 m 

length and 1 m width with 0.0005 bed slope. 

Chezy roughness coefficient is assumed to be Cz= 50 

m
0.5

 /s. It is assumed that there are four different 

sediment types in the sediment column. Sediment 

characteristics used in the model are summarized here 

in Table 1. 

 

Table 1. Sediment Characteristics 

 
 

maximum concentration of  Cmax = 500 kg / m
2 

was 

assumed for each particle size. 

Note that 

 
(31) 

Gessler (1965) suggested a value of 0.047 for κ for 

most flow conditions. 

The value of transfer rate can be calculated in flumes 

by σ = 1 / (7h), where h is flow depth, parameter Φ 

has a range of 0.0 – 1.0 and exponent ki has a range of 

1.0 – 2.5 in the literature (Foster 1982, Tayfur 2002, 

Yang 1996). The inflow hydrograph and inflow 

concentration are given in Figure 19 for the upstream 

boundary conditions. 

 

 
 

 

 
 

 

Figure 19. (a) Inflow hydrograph. (b) Inflow 

concentration 

 

 

 
 

 

a 

b 
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Figure 20. Transient bed profiles of nonuniform 

sediment and uniform sediment model at (a) rising 

period (b) equilibrium period (c) recession period (d) 

post recession period of inflow hydrograph and 

concentration in unsteady flow conditions. 

Simulations were significantly under d50 (median 

diameter) and a nonuniform mixture for all the periods 

of the simulations. Under d50 (median diameter) 

conditions, bed levels were lower than nonuniform 

flow case (Figure 20). 

In another simulation for the same flume we 

considered constant inflow hydrograph with Q = 1.2 

m
3
 / s and the same inflow sedimentograph seen in 

Figure 19b. The simulations for this case are 

presented in Figure 21. While nonuniform and 

uniform sediment transport model give similar 

performance under steady flow conditions, they have 

give different performance under unsteady flow 

conditions (Figure 21). 

 

 
 

 
 

 

 

 
 

Figure 21. Transient bed profiles of nonuniform 

sediment and uniform sediment model at (a) rising 

period (b) equilibrium period (c) recession period (d) 

post recession period of inflow hydrograph and 

concentration in steady flow conditions. 

7. CONCLUSION 

From the study results the following conclusions 

could be drawn: 

1. Numerical model is able to capture the effects of 

suspended sediment and bed load sediment on 

sediment transport., otherwise detachment occurs. 

The model is able to capture this phenomenon of 

deposition and detachment. 

 

c 

d 
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2. The application of the developed model to 

hypothetical cases revealed that the model is able to 

capture the behavior of the process in alluvial 

channels. 

3. Modeling the process under nonequilibrium 

conditions give different results than those under 

equilibrium conditions. Therefore, if the flow 

conditions are in nonequilibrium, it should be so 

modeled. 

4. The investigation of different particle velocity 

formulations revealed that under the same flow 

conditions, wave front is faster in Kalinske and Bridge 

and Dominic’s formulation. 

5. The investigation of different particle fall velocity 

formulations revealed that under the same flow 

conditions, they produced nearly the same results. 

6. The numerical investigation of different sediment 

flux (bed load) formulations revealed that under the 

same transport flow condition, the kinematic wave 

theory produced different results then Meyer – Peter 

and Schoklists. Meyer – Peter and Schoklists 

produced nearly the same profiles. Under kinematic 

wave theory, the wavefronts move faster. 

7. The numerical comparison of kinematic, diffusion 

and dynamic wave for hypothetical cases of sediment 

transport revealed under the same sediment flux 

function of the wavefront is slower in the case of 

kinematic wave. 
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