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ABSTRACT

Position and orientation accuracy of the end-effector is influenced by the
prec:1s1on of kinematic parameters elements of the robot. Thus, good precision
requires good knowledge of robot physmal parameters values. However, this
condition can be difficult to meet in practice. Hence, calibration techniques can
be devised in order to improve the robot accuracy through estimation of those
particular parameters. In this paper, the Genetic Algorithm (GA) is used to
calibrate the robot kinematic accuracy. A kinematic model is formulated and
conducted as an optimization problem for serial robot manipulators. The
objective is to analyze and evaluate the performance of the GA in optimizing
such robot kinematic accuracy. In this algorithm, the errors in the robot
parameters represent the parents and offspring population and the error matrix
norms represent the cost functions. The convergence and effectiveness of the
presented model are demonstrated by a numerical example.
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1. INTRODUCTION

Genetic Algorithm (GA) [1] is a rather new search tool in robotics, which
exhibits high efficiency in certain multi-modal and multi-dimensional domains.
The algorithm has been implemented to handle the optimization problems for a
number of different application areas, such as robotics [2], composite materials
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design, scheduling [3] and also salesman problems [4]. Recently, it is a gate for
the automatic design, which is the best way to develop artificial intelligence. It
can be easily adapted to the planning problems for many types of assembly
machines [5]. The GA uses population as parents to represent possible
solutions. The fitness of all of the individuals in the population is evaluated by
its cost. The genetic operators (such as crossover, inversion, rotation and
mutation) are applied to generate new population called offspring in an iterative

procedure to obtain nearly optimal solutions.

The position and orientation of the end-effector would have no errors other than
those caused by imperfection of the repeatability and dynamic effects. However,
in more sophisticated applications, errors in the position and orientation of the
end-effector result from the kinematic parameters errors as well, which are
mostly due to manufacturing and/or measurement errors.

The calibration of robot manipufators has attracted many researchers.
Veitschegger and Wu [6] have presented a result comparison between two
models. The first model] has ignored the higher order terms and did not address
the special case of two consecutive parallel joints, while the second model has
considered both cases. Wu {7] has used a new technique to correct the
kinematic errors of robot manipulator. Vukobratovié and Borovac [8] have
investigated the influence of the deviations of the links nominal measures {due
to manufacturing tolerances) on the accuracy of positioning the manipulator tip
for various mechanism configurations. Bruyninckx et al. [9] have developed a
systematic and fully general model-based approach to compliant robot motion,
taking into account uncertainties in the geometry of the manipufated object and
the environment with which it is in contact. Samak et al. {10] have studied the
effect of kinematic perturbations on robot precision. Kazerounian and Qian [11]
have presented a kinematic calibration model for position and orientation of
serial manipulator end-effector errors due ‘o repeatability imperfections.

The present paper introduces a new perspective proposal in order to analysis,
implement and evaluate the performantce of the GA in optimizing the robot
kinematic accuracy. The kinematic re¢lationships have been described by using
the zero-reference-position (ZRP) method. The prescribed analysis showed

improvement in the robot accuracy precision.

2. ZERO POSITION ANALYSIS METHOD

The zero position analysis method was introduced by Gupta [12]. It has the
advantages that it is not prone to the discontinuity difficulties as those in the
Denavit Hartenberg notation. Due to the nature of this method, small changes in
the structure inherently correspond to small changes in the structure parameters.
It has also proven its effectiveness and versatility in many works on both
kinematic and dynamic analysis of robot manipulators [13]. The joint coordinate
systems in this method are not used. Instead, a convenient reference position of
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the robot is chosen and the following vectors are defined in the world
coordinate system,

#g; = a unit vector along joint axis i.

by; = a body vector which connects a point on joint (1 1) to a point on joint i.
Uy, and ug = two perpendicular vectors fixed on the end-effector.

All the above-mentioned parameters are given in their ZRP (with zero
subscript). ‘They are converted to the current position as the manipulator moves
to new positions. The current vector are derived from their ZRP vectors as
follows,

w; = Ruy, (1)
bm = Ribﬂ.i+1 (2)
u, =Ryu,, and  w, = Ryuy, 3)

Where i = 1, 2, ..., n; the 3 by 3 rotation matrix R;, for a revolute joint, 1s
defined as

R, =R(q,u,)R(Gs1,5) -~ R@uy) = [[R@puy) (@)

J=i

Hence, for n-revolute joints manipulators, the above equation represents the
hand orientations Ry, as

R, xﬁR(Qirum‘) (5)

i=f

The matrix R(q;,u,;) rep'resents a rotation by g; about a screw axis u,; It can
be written as [14].

2
(=1 wuV,—u S, uuV+u,s,
R(q; ) =|unVi+u S, @,-DVi+1 wulV,-uS, (6)
uuVi—u, S, wuV.ruS; . -NV,+1

where, V; =1 - cos(q,) and S; = sin(g:), and u, u, and u; are components of the
unit vector #y;. If the i Jomt is prismatic, then R(q;,u,;) is replaced with a 3

by 3 identity matrix.
Equation (6) can be decomposed as follows,

R(q; n,;)=V;, A+ S, B+1 (N

i

where
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2
u—~14 uu, uu, 0 -u, u

= 2 = -
A=\uu, w,~1 uyu, and B=| u, 0 u, )
wa, wu, ui-l —u, wu, 0

3. ROTATIONAL ERROR MODEL

For small changes in w,, #, and u,, the corresponding small change in the
rotation matrix R(q;,u,; ) can be shown to be

OR(q; u,;) =R Sug .+ R, Sup + RSup, ©®
where
2X; Y, Z 0 X, S 0 =S X))
R,=y Y, 0 -S| R,=|X; 2Y; Z;| and R,=lS, 0 Y, 1(10)
Zi S.' ”"'Sl‘ ZI' 0 X'- Y'- 22,

For small changes in R(q;,u,; ), the hand orientation, Eq. (5), becomes
R, + R, = | [[R(q;.45:) + SR(q;,40)] (1)
i=]

Ignoring second and higher orders of variations, the above equation leads to

SR, R} =Y [R_,0R(q;,us)R] | (12)

i=!

The left-hand side of Eq. (12) is a skew symmetric matrix. It has only three
significant elements namely (3,2), (1,3) and (2,1) or ér;, 6, and dr;. Therefore,

JR, R could be converted to a vector dr, , which shows the errors in the end-
effector orientation. Substituting JSR(q,,u,;) from Eq. (9) into Eq. (12) yields

ory, = i {Ri—f (in5 Ups ot R 01y, ,+ RS uy; )R;T} (13)

i=1
4, POSITIONAL ERROR MODEL

The position vector P, of a reference point p at the hand
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P, = " bivi =i Riby;r = i{ﬁ R(q;,u; )] boes } (14)

i i=l i=1 |\ j=t

For small changes in P,, the position vector becomes

P, +0P, = i{[ﬁ (‘R(qj’uﬁ) + 53(‘?;’"0;))] [bo,m +6 by ]} (15)

=l W\ =t

Ignoring second and higher orders of variations, the above equation leads to

oP, = Z{RuéR(Q."um){bo,m + Z
i=l

J=i+l

[ ]i[R(qk oy )J boj.i :|}} + iR:§bo,i+1 (16)

k=i+] i=!

The above equation shows the errors in the end-effector position. Substituting
OR(q;,u,;) from Eq. (9), the above equation becomes

oP, = z”: {R;-z (in5 Upi ot RS uy .+ Ri6u,, )E}+ Zn: R;0by;,, (17)
i=1

i=l

where

E=by;; + Z(R(‘Ij:uoj)bo,ju) (18)

Jmivl

In order to insure the length constraint of the unit vectors, the following
constraint is to be satisfied,

”"01 " = \/ufi‘,x + "gi,y + uji,z =1 (19)
For small changes,

— T —
Upg; OUg;  + Upi y 5u9,-'y +uy, Oy, =0 or uyou, =0 (20)

i

The above constraint is also implemented as an extension to the error Jacobian
matrix.

5. ERROR JACOBIAN MATRIX

From Egs. (13,17,20), the following equation can be constructed,

dug | or,,
et =lam) @
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The above equation describes a linear relationship between the errors in the
robot kinematic parameter elements (JS#,;-and by, ), which can be defined as

follows
Oug =(0uy, Oug, Oly, - Sthg )" : (22)
by =(dby;, by, ¥ Oby;, -+ Oby,, )T (23)

and the error in the position and orientation of the end-effector (6r, and 6 p,, ).
The matrix J represents the error Jacobian matrix, which can be expressed as

J1 J2
J=|J13 JH (24)
J5 J6

The i elements of the submatrix JI are defined as

JIi = [Ri-—IR RT Ri—l RyiRiT Ri—Isz R;r] (25)

while J2; =@ ; and the i" elements of J3 are

J3'=1R;—;inE R, R.E Ri_jRﬁE] (26)

i

where FE is given by Eq. (18); and

J4, =R,  J5,=u, and J6,=0 27)

JI to J4 are 3x 6n; while J3 and J6 are n x 6n. Therefore, The error matrix J
is then (6+m)x6n. The errors in the kinematic parameter elements (Ju,and

5b,).

6. CALIBRATION ALGORITHM

In the calibration algorithm, the kinematic parameter errors are used to
represent the GA-; population and their Spectral norms represent the GA-; cost
functions. The algorithm could be proposed as follows:

1. The nominal link parameters (u,; and by;) and the joint variables ¢ are used

for an arbitrary configuration.
2. The nominal hand orientation and position Ry, and P, are computed by using

Egs. (5,14).
3. The error Jacobian matrix J is constructed by using Eqs. (25 — 27).
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9.

The actual joint variables g,are calculated by adding a range of random
error values. -

The GA iterations is started by generating some initial populations for the
link parameter errors du,; and &b,; . These populations are used as parents
from which the genetic operators are applied to ‘produce new offspring
population.

The actual hand orientation and position R; a.ﬂd_}y‘I",‘,I are computed as in
step 2 by utilizing the actual joint variables.
The right hand side of Eq. (21) is obtained as
Sr=0R,R; and 6P,=P:-P, (28)
where
The offspring populations are computed from the following relationship (the
Pseudo inverse is used).
ou or
Ph=g (30)
b, P,
Then, their population costs are evaluated by computing their Spectral
norms.
The offspring together with their parents are evaluated by their costs. The

most fit population are those with the lowest costs.

10. This process is iterated until a certain criterion {such as a certain number of

iterations) is met.

7. A CASE STUDY

A Numerical example is presented in an arbitrary configuration for a six-degrees
of freedom PUMA-type manipulator (Fig. 1). Its joint variables are chosen as

q=(-2741 4501 2609 2.044 0.389 2.285)

The nominal kinematic parameters are listed in Table 1. The joint value errors
are randomly taken from a range of + 0.00]1 radians; while the kinematic
parameter errors are randomly taken from a range of £ 0.01 for screw axes #”
and + 0.5 for body vectors 5.
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Fig. 1. PUMA-type robot in its ZRP configuration

Table 1. Nominal kinematic parameters

bog : b()'] (I’l’lITO

0 30 0 00 O

¢ 0 00 0
01 10 -1 0200 O 0 00 0
] 0 0 1 -500 0 O -100

0 0

Initial populations are generated to represent the parents from which an initial
set of errors along with their initial cost are computed and listed in Table 2. The
GA™ operators are then applied to generate the offspring. This algorithm is
converged after 11 iterations. The optimal kinematic parameter errors and their
cost are given in Table 3. Whereas, the algorithm convergence are shown in Fig.

2.
Table 2. Initial population with its cost
- . Cost
Suy, : g (x 107) &by, 1 Oy (rm)
025 064 057 012 005 029 ] 0.15 009 026 023 031 048
076 051 053 000 -099 077 | -920 007 -037 027 -047 -0.08 | 00i12
001 063 025 09 077 -026 | 009 047 007 036 016 -0.00
Table 3. Final optimal population with its eost
- . Cost
By, T O (x 107) Obgy 1 Obyy (mm)
029 064 077 099 000 053 | -030 -032 007 044 033 030
076 051 829 095 -0.12 057 | -027 020 038 -047 038 -0.45 | 0.0027
001 092 077 063 025 026 ] -046 011 019 040 027 048

From the foregoing example, it has been shown that the initial cost is 0.0112
and the final optimal cost is 0.0027. Therefore, the optimal kinematic parameter

errors are reduced by 24.1%.
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Fig. 2. Convergence of the algorithm

8. CONCLUSIONS

The Genetic Algorithm procedure is used to calibrate the robot kinematic errors
based on the zero position analysis method. The effectiveness of the algorithm
and its convergence in the presence of small joint errors and measurement errors
is demonstrated through a numerical experiment. The kinematic parameter
errors are reduced the by 24.1%.
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