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ABSTRACT

~ This study addresses the cell formatlon problem in group technology,
through a comparison of the solutions provided by two algorithms. The first
onc is based on the ideas of Bond Energy formulation (Matching Algorithm
(MA)), and the second is based on Commonality Scores analysis (Linear
Cell Clustenng Algorithm (LCCA)). The relative performance of MA and
LCCA was investigated. under three types of Datasets. The research applied
Cell Generation, Percentage of Exceptions and Grouping Efficiency as
performance measures. The results of the experiments indicate that, in
general, MA is superior to LCCA in terms of Cell Generation and
Percentage of Exceptions measures, while LCCA scores higher values of
Grouping Efficiency. '

1, Introduction

The cell formation problem in Group, Tectmology (GT) has been
addressed by several studies by many researchers. This problem which is
embedded in a larger cell design process is very important indeed, since it
influences the physical layout of the system, and thus influences the
schedulmg and control policies of the system. Numerous techniques for
solving this problem are available in the literature, where a large number of
cell formation algorithms, belonging to various approaches , have been
developed over the last three decades to solve the machine - part grouping .
problem.
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_Despite the existence of several procedutes for solving the cell
formation problem, still missing from the literature are studies directed to
the problem of selecting among these numercus procedures. Hence,
practitioners are still faced with the problem of selecting the appropriate
cell formation algorithm that can be applied to their specific environments.
Here, this study is an attempt to bridge this gap is cellular manufacturing
(CM) systems studies by providing a comparison of two promising cell
formation algorithms using cell generatior, Percentage of Exceptions, and
Grouping Efficiency as measures to assess the “goodness” of the solutions
provided by each algorithm.

The problem of partitioning a manufacturing system into machine
groups and the related problem of partitioning the set of manufactured
parts into part families, according to the routing sheet information, is
known as the cell formation problem. In its simplest form it can be
formulated as a matrix diagonalization problem, where the incident matrix
(ajj) (explained below) is transformed into a block diagonal form such that
mutually exclusive part families and their corresponding machine groups
emerge. Actually, the cell formation problem iuvolves three major
mterrelated issues: the identification of part families, the identification of -
machine groups, and the allocation of part families to machine groups.
Block diagonalization of the incidence matrix is the first and most
important step towards the application of GT.

2. Cell Formation Algorithms -

Cell formation means the identification of a family of parts as being
suitable for manufacture on a specific group of michines. There are several
approaches that have been attempted to solve this problem, but only few
rescarchers have attempted to develop frameworks for the cell formation
process. Based on a comprehensive literature survey , the following two cell
formation algorithms are selected to be tested and compared:

(1)  Matching Algorithm (MA) (Bhat & Haupt, 1976);
(2)  Linear Cell Clustering Algorithm (LCCA) (Wei & Kem, 1989).

It has to be mentioned that MA is always able to find a total division into
groups, which complete all the parts they make, if such a configuration
exists, Le. it is able to form a completely celtular layout if one exists, which
is not the case for LCCA. In addition, the two algorithms, for their
operations, need nothing more than a machine - part route matrix. :

On the other hand, it isnoted that the two algorithms selected for

testing here could be programmed on a computer, which is an essential
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feature since many real applications may be too large for manual approaches
Now, each of the tested algonthms will be comsidered in detail in the
fo]lowmg sections.

2.1 Matchin orithm

Bhat' and Haupt (1976) proposed a clustering algorithm based on the
ideas underlying the Bond Energy Algorithm (BEA) of McCormick et al
(1972) and the shortest Spanning Path Algorithm of Slagle et al.-(1975).
According to the taxonomic frame suggested by Offodile et al.(1994), the
model stracture for this algorithm could be classified ashaving a matrix
formmlation of the Array-Based type, and its solution approach is also an
Array-Based approach (Bond energy). It is noted that Array-Based methods
group machines and parts without applying a similarity measure. Rows and
columns of the incidence matrix are rearranged until a diagonal pattern of
miutually separable clusters emerges. Machine - part groups are forméd
simultaneously. The strength of the proposed scheme is in itsuse of the
special property of matrix B = A*AT. It reduces the required computations
by a factor of (n) for row ordering and (m) for column ordering of an mxn
matrix (A). This algorithm ', which is called the Matching Algorithm (MA),
uses integer .arithmetic similar to the methods of the BEA and the Shortest
Spanning Algorithm. The MA is a general cluster analysis technique, and it
is not specially developed to solve the part family / machine group formation
problem. The MA is based on the fact that the formation of clusters from an
unorganised data array can rest on a simple rule which reckons with the
number of matchings of the zero and nonzero entries between two parallel
lines (rows and columns) of the array. Depending on the specific problem
that gives rise to a data array, one could further assign some weightings for
the zero - nomzero structure in order to realise chsters that are germane to
the problem. In fact, these ideas are .implicit in the BEA and the shortest
path algorithm, but the mauner in which the MA has been conceptualised.
does make a significant difference to cluster analysis. The principal
advantage as claimed by the authors is that the MA stems from the fact that
when a row isrearranged, the change in the number of matchings need not
be recomputed for each possible arrangement, instead only the change in ¢ -
which is given by :

m-1
sum ¢ = D bi,i+1 , where; b=A*AT - is evaluated.
=1
Fm‘thermore A * AT 55 obtained by merely comparing and counting and not
by matrix multipfication, so the computation of A*AT is equal to the
computation of matchings among the rows. The MA has a computational
complexity of O(m2+n2).
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Wei and Kem (1989) suggested an algorithm which is based on the
calculation of a commonality score which indicates the similarity in the way
two machines are used in the shop to manufacture the products. The
algorithm generates consistent machine groupings regardless of the initial
order of the input data. The clustering process allows sensitivity analysis of
the solution, introducing various constraints on the characteristics of the
machine clusters, without requiring repetition of major portions of the
procedure. The algorithm has a linear computational complexity. The
commonality score not only recognises the parts on which two machines do
work, but also the parts on which the machiries both do not work. The
algorithm can always create the maximum number of cells dictated by the
commonality scores. The similarity score used by the authors is an
adaptation of the similarity score that Kusiak (1987) applied to the
clustering problem. Kusiak's formulation produces a (P x P) matrix, while
commonality scores produce a (M x M) matrix, and since the latter matrix is
smaller, it therefore requires (in most cases) less processing time to cluster.
Kusiak (1987) defined a similarity score for part pairi and j as:

Sij=Z S(aik, ajk)
Where &(a;, Jk) ={lif ay = A3 O otherwise}. Kusiak
had one condition for adjusting his similarity score: if ay = g then add

one point to the score. But, the commonality score includes two conditions
for adjusting the similarity score:

Q) if A = A= 1, then add (p - 1) points to the commonality score Cjj;

2)ifay = ’;‘jk = (), then add one point to the c;)mmonality score Cij.

In this way, only one case adds zero points to Cij: if ajk = ajk, which
means that one of the machines is used to manuficture part k, and the other
is not.

In Summary,
Cij =ZI- (aik, ajk)

|(p=D,if agg =aj =1
Where: (aik: ajk)= i, if aj = ajk = 0
0, . 1f aik ;tajk

Once the commonality scores have been calculated, the scores must
be compared and the machines clustered accordingly. The worst-case

complexity for the LCCA process is O(mlog m + m?2/2).
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3. General Comments . "

According to the framework suggested by Offodile et al (1994), the
model structure for the LCCA could be classified as having a matrix
formulation of the Similarity Coefficient - Based type, while its solution
approach is of the heuristic type.. But, according to the classificatton
suggested by Wemmerlov and Hyer (1986), which is more appropriate for
performing our comparison, we find that:

MA is a  techniques that identifies part families and machine groups
simultaneously while the LCCA alone belongs to the techniques that identify
machine groups only. Therefore, there is a need to augment the LCCA with
an appropriate assignment procedure of another cell formation algorithm. By
reviewing previous literature, the following was obtained:

@) Kaparthi and- Suresh (1994) augmented the LCCA by incorporating
neural network logic for allocating parts, and they called that the
Augmented Linear Clustering (ALC). Although, the authors showed that the
ALC “algorithm was superior for large datasets, they pointed out that the
principal limitation with neural network methods, is the category
proliferation problem. That is, the pumber of classes identified tends to
mcrease ‘rap1dly when data size is large, and/or when vigilance threshold
parameter is set at high level.

(i)  The possible algorithms for augmenting the I.CCA were Rank Order
Clustering algorithm (ROC2) (King and Nakornchai, 1982) and Direct
Clustering algorithm (DCA) (Chan and Milner, 1982). Any of these two
algorithms could have been used. However, the DCA was found to be more
suitable for augmentmg the LCCA, because it is simple and effective in
clustering data dlrecﬂy from any given machme-component matrix, and in
addition it was specifically designed for computer use and it can easily deal
with large amounts of data obtainable in realistic situations. These two latter
features of the DCA are essential since many real applications may be too
large for manual approaches. The DCA is based om progressively
restructuring the machine-part matrix by going through it sequentiaily,
moving the rows with 'lefi-most' positive cells to the top and the columns
with ‘top-most' positive cells to the left of the matrix Thus, if LCCA is
augmented with the DCA, in relatively few trips the positive cells will be
squashed toward the diagonal ofthe matrix and a clustered pattem will be
formed, since by the original LCCA i the first stage of the augmented
algorithm, the columns (machines) will already be in the right order.
Therefore, in this study the LCCA is augmented with the part assignment
procedure of the DCA, and hence the solutions obtained by this augmented
form of the LCCA can be directly compared with the solutions generated by
the other tested algorithms. In the rest of this study we refer to this
augmented form of the LCCA briefly as LCCA.
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4. Computer Programs

FORTRAN langaage (Version 5.1} was used to code all the tested
algorithms, and they were executed on an ASI 486DX-33 personal
computer (PAT 48 AV 486 VL-Bus/ISA System Board). For running any of
these programs the user needs to input a part - machine incidence matrix,
where a value of one in row i and column j means that the part i is processed
on machine j, while a zero indicates that machine j is not involved in the
processing of part i. Also, the user needs to specify the number of parts
(rows) as well as the number of machmes (columns).

5. Dataset Generation

The two algorithms were tested on one route sheet dataset from each of the
following three data pattems:

(1)  Block Diagonal (BD) pattern: where part/machine groups lie in
separately defined blocks along the diagona! of the route sheet data matrix.

(2)  Block Diagonal with Low Intercell Transfers (BD/L) pattem: in this
dataset, approximately 10% of the parts require routing to more than one
cell. :

(3)  Block Diagonal with Medium Intercell Transfers (BD/M) pattern: in
this dataset, approximately 20% of the parts require routing to more than
one cell.

The BD pattern dataset (see Appendlx A} is based on the problem given by
Morris (1988).

Then the BD/L and the BD/M pattems were obtained from this BD
pattern by modifying the routings of some of the parts in order to obtain
about 10% and 20% exceptional parts, respectively. These datasets were
randomised, then the disguised datasets were clustered by each of the tested
algorithmus, and the original stractures sought to be recovered.

6. Algorithms Comparison Measures

The following measures were considered to compare the alternative
clustering algorithms by assessing the "goodnes= " of the solutions provided
by each algorithm:

6.1 Cell Generation

By this measure it is meant to check the ability of each algorithm to
produce BD solutions when they exist, and also their ability to correctly
identify the cells that did not contain exceptions in the cases of BD/L and
BD/M patterns.
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6.2 Pefct;iitagé- of Exceptions

- Is defined as the ratio of the parts requiring processing in more than
one_ cell. (exceptlonal palts) to the total number of parts, gwe.n as a
percentage. It is noted that this measure is dliferently defined in other
studies (Shafer and Rogers (Part IT), 1993).

6.3 Eﬂ'iciencyi AMeasures

The Grouping Efficiency (G.E.) as suggested by Chandrasekharan
and Rajagopalan (1986b) will be used in this study. The concept of GE.is’
based on two parameters: within - group utilisation and intercell movement.
From the matrix point of view, the concentration of non-zero elements in the
diagonal submatrices refers to utilisation, and the presence of such elements
outside the diagonal submatrices represents intercell movements. G.E. is
expressed as a weighted average of two efficiencies h1 and h) as follows:

GE. =qh+(1-g)h,

Where:
0<qx1.0,

h, = numher of non-zero elements in the dlagonal blocks + total munber of
elements in the d:agonal blocks. '

and hy = number of zeros in the off- dlagonal blocks + total number of
elements in the off-diagonal blocks.

h; represents utilisation efficiency and kg represents mtercall movements
efficiency.

G.E. satisfics the basic requirements of non-dimensionality, non-negativity
and zero - to - one range. The weighting factor (q) makes it possible to alter
the emphasis between utilisation and intercell movement, depending on the -
specific requuements of the given problem. -

The altemat!ve algonthms in this study were compared for three values ofq
© 0.2, 0.5, and 0.8. Harhalkis et al. (1990) have suggested a similar
evaluation criteria, where their efficiency concept is based on .three
efficiencies: Global Efficiency, Group Efficiency and Group Technology
Efficiency. It is noted that these three efficiencies are not entirely
independent, and it seems more appropnate to-use the G.E. measure as -
defined above.
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1t is worth mentioning that, in this study the computatlonal time measure is
not applied due to the following:

()  the execution times may not be of importance, since cell formation is
a design exercise that may be required once, and it will not be executed on a
day-to-day basis;

(iiy  the four tested algorithms, as appeared during the pilot runs are very
fast indeed, and this also was supported by results obtained in previous
literature conceming the time requirements for these algorithms.

7._Discussion and Analysis of Clustering Solutions Obtained by the
Algorithms

7.1 E:gpgnmental Results

The cell formation results, for each of the tested a]gonﬂ:ms using 3
put datasets : Dataset of BD pattern, Dataset of BD/L pattem, and Dataset
of BD/M pattern were obtained as part/machine clusters. These results were
then used to compare the solutions generated by the tested algorithms in
terms of their ability to generate cells, percentage of exceptions, and G.E.

measure for three levels of q (0.2, 0.5, and 0.3). Table 1.1 showsthe

number of cells together with the Percentage of Exceptions given by the
tested algorithms under the 3 Datasets. Table 1.2 presents the values of the
within-cell utilisation parameter (hl) and intercell movements parameter
(h2). Tables 1.3 through 1.5 summarise the results obtained for the G.E.
measure for the two tested algorithms, under 3 Datasets, under three levels
of the value of q. The next sections present the results of these tests together
with their discussion and analysis, and a number of important conclusions
wete drawn.

7.2 _Results of Cell Generation and Percehtagek of Exceptions
(1) Dataset 1 : (BD pattern)

{I) MA algorithm, produced a pure block solution, but the LCCA algorithm
failed to produce a pure block diagonal solution, i.e. the solution obtained
for this Dataset contained exceptional parts, where this solution contains a
higher number of cells when compared to the solution offered by the MA
algonthm

It should be noted that the number of cells (or clusters) obtained by the
LCCA are the maximum number of cells possible by this algorithm, without
having any constraints on the number of cells or altzrnatively the cell size. If
we assume that the numbers of cells-obtained by the solution offered by the
MA algorithm are the desired numbers of cells, the LCCA will produce a
solution that have much lower percentages of Exceptions than those shown
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in Table 1.1. This shows the flexibility of the LCCA, which is obtained by
the joining operations of the algorithm, based on selecting the highest
commonality score that has not yet been considcred in the clustering
process. :

(i) The MA algorithm produced a pure block solution - but not block
diagonal solution - where the clusters were interspersed above, below and
along the diagonal For the LCCA, although the clusters start from the
north-west and end at the scuth-east diagonal, the clusters are still
interspersed above, below and along the dxagonal

(iii) The MA algorithm obtamed a solution with zero Percentage of
Exceptions, while the LCCA obtained a solution with 52.5% Percentage of
Exceptlons

(2) Dataset2: (BI)IL Pattern)

The MA algorithm generally ranked better than LCCA algorithm
with respect to the Percentage of Exceptions measure. The LCCA produced
the highest percentages of Exceptions-when considering its initial solution.
But, as-mentioned before, if fewer cells were desired, the LCCA would be
expected to give a lower percentages of Exceptions.

(3)  Dataset 3 : (BD/M Pattern)

Again, the high percentages of Exceptions obtained by the LCCA
were due to the high number of cells created by this algorithm.

- Finally, it should be noted that the MA algorithm, is sensitive to the
initial arrangement of the dataset matnx, while the LCCA algorithm is not.

7.3 Results of Groupmg Efﬁclencg Measure

() It was apparent’ friom Tables 1.3 through ].5, that the L.CCA scored
the highest values of G.E. This was true with the highest value of q (0.8) i.e.
when much emphasis is being placed on the within - cell utilisation factor,
and it was also true when more weight was given to the frequency of
intercell movements parameter ie. at q = 0.2. Thus, whatever the value
selected for q, the LCCA attained, generally and consistently, the best values
of G.E. when compared to the MA algorithm.

(i)’ The relative performancé of the two algorithms tested was not
affected by the value of q for all the datasets.
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8. Conclusmns and Recommendatmns for Future Reasearch

(1) Generally, the MA algonthm outperformec the other aIgomhmm the
Percentage of Exceptions measure i.e. it has the lowest values with respect
to this measure.

2) Only the MA algorithm was able to identify the existence of a (BD)
solution (Dataset 1), but the LCCA was not successful in doing so.

(3)  Irrespective .of the value chosen for q, the LCCA, genera]ly and
consistently, outperformed the other tested algorithm, under all the datasets,
with respect to the G.E. measure.

(4) The form used here in.this research for the LCCA is a modified one,
since the original algorithm just gives the group of machines for each cell,
without identifying the part families associated with each cell. Thus the
algorithm is successfully augmented with the part assignment procedure of
the DCA .

(5) The LCCA sometimes failed to ideatify the originally specified
clusters, but this is not a problem, since this is generally associated with
using the algorithm without forcing any constraints on the number of celis:
But, generally when the nmumber of cells is decided; the algorithm could
easily identify the block diagonal solutions. Also, it should be known that
these originally specified clusters are not necessarily the best solutions.

For example, with Dataset 1 the LCCA solution has 7 cells, while the
initial data has a 4 cells (BD) solution. If we then apply the constraint that
the number of cells is 4, immediately from the LCCCA solution chart, it can
bee scen that cell 2 [3,8,11] should be joined with cell 1 [17,22,20,25,2],
and cell 3 [4,12,16,6] with cell 5[5,19,14,24], in ofder to obtain a (BD)
solution, which is exactly the same:result wher. the commonality score
values are used. Alternatively, without knowing the number of cells that are
required fo create a (BD) solution, the cell jojning process could continue,
according to the values of the commonality score, until no exceptional parts
exist, if originally there exists a BD solution.

(6) This research serves to bring inte focus the utilisation of the MA as a
promising cell formation algorithm, although it is a general clustering
technique, and it was Dot specially déveloped to solve the cell formation
problem. Jts effectiveness has been demonstrated in the following aspects:

- It was capable of producing - a pure block solution with the (BD)

patternt of input Dataset 1;

- generally, it yielded the lowest percentage of exceptional parts, when
compared to the other tested algorithm,
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(7)  The findings of this study open many more doors than they close in
terms of future research directions. An obvious extension of this research is
to compare the tested algorithms uwsing larger input datasets than the ones
used in this study, such that they would bear more resemblance to industry
realities. This is useful in determining which algorithms are amenable for the
much larger datasets encountered in practice.

Table 1.1. The number of cells created and the Percenta

of Exceptions (%)
Algorithms
MA LCCA
ataset [Pattern _
umber (Cell No. (% ICel NO., Yo
5 BD 4 0.0 7 52.5
10 /L 4 7.5 7 47.5
15 BD/M 4 12.5 7 52.5

Table 1.2 Values of within - cell utilisation parameter (h1)and intercell
movements parameter (hy)

Algorithms -
MA LCCA
Dataset ]Pattern
Number |- h1 - |b2 h1 2
5 . BD 0.52° .00 065 - ~ lo.9s
10 BD/L 0.52 1.00 0,63 .96
15 _[BD/M 0.52 0.99 0.68 0.96

Table 1.3 Grouping Efficiency (G.E.) values at g = 0.2

Dataset Pattern MA LCCA
.5 _ BD 0.90 089

10 BD/L 090 .| 050
15 | Bom | 090 | 09
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Table 1.4 Grouping Efficiency (G.E.) values at g = 0.5 .

Data set I'attem-' . | MA LCCA,
5 BD 0.76 0.81
10 BD/L 0.76 |0.82
15 BD/M 0.76 0.82

Table 1.5 Grouping Efficiency (G.E.) values at q = 0.8

Data set Pattern MA LCCA

5 BD 0.62 0.72

10 BD/L 0.62 0.74

15 : BD/M 0.61 0.74
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Appendix A

Datasets

Al.  Dataset 1; Block Diagonal Pattern |
(25 Machines & 40 Parts) -

Parts/Machines

00121022
38157202

00000000

011022110
138713509

11020101
49546246

000000600

00000000

000000090

06000000

000000030

06000000

000000020

6000000

000000000

60000000

000000000

00000000

00000G000

000000060

000000000

00000000

060000000

06000000

0000060000

00000000

000060000

00000000

000000000

00000000

000000090

060006000

000000000

00000000

0006000000

06000000

0000060000

00000000

000600000

00000000

00000000

00000000

00000000

00000000

00000000

000600000

000600000

00000000

00000000

00000000

00000000

000600000

006000000C0

00000000

00000000

00000000

00000000

00000000

60000000

000006000

00000000

00000000

00000000

00000000

00000000

600000000

00000000

60600000600

000000600

000000000

00000000

000000000

00000000

000000000

00000000

000000000

00000000

000000000

00000000

000000000

00000000

600000000

00000000

000000000
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A2.  Dataset 2: Block Diagonal With Low Inter-cell Transfers

(25 Machines & 40 Parts)
Paris/Machines -

00121022 011022110 [11020101
| 38157202 138713509 |49546246
1 0000060000 |00000000
2 000000000 (00000000
4 600003000 (00000000
5 000103000 [00000000
6 000000000 [00000000
7 000000000 (00000000
13 000000000 [00000000
14 000000000 [00000000
17 000000000 [00000000
|18 000000000 |[00000000
12 000000000 (00000000
16 000000000 [00000000
9 000000000 |00000000
10 000000000 |00000000
15 000000000 (00000000
11 0000006000 [00000000
3 000000000 [00000000
8 000000000 [(00000000
19 00000000 00000000
21 (00000000 00000000
22 (00000000 00000000
27 |00000000 03000600
29 100000000 00000000
25 100001000 00000000
26 100000000 00000000
20 (00000000 00000000
23 00000000 00000000
24 00000000 00000000
28 (00000000 ; 00000000
30 |000060000 000000000
33 (00000000 000006000
32 {00000000 000000010
31 |00000000 000000000
34 100000000 000000000
35 |00000000 000000000
36 (00000000 000000000
37 /100000000 000000000
38 (00000000 000000000
39 {00000000 0000006000
40 (00000000 000000000
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A3. Dataset 3: Block Diagonal With Medinm Inter-cell Transfers
(25 Machines & 40 Parts)

Parts/Machines

00121022 011022110 11020101
38157202 138713509 49546246
1 000000000 00000000
2 000000000 00000000
4 000000000 006000000
5 000100000 00000000
6 000000000 00000000
7 000060000 00000000
13 000010000 00000000
14 000000000 00000000
17 000600000 00000000
18 000000000 (00000000
12 000000000 000000600
16 : 000000000 00000000
9 000000000 000060000
10 000000000 00000000
15 0000600000 00000000
11 000000000 00000000
3 0000060000 000060000
8 000060000 000000090
19 00000000 00000000
21 16000000 00000000 _
22 00000000 00000000
27 00000000 01000000
29 000000600 000060000
25 00001000 060000000
26 00000000 00000000
20 00000000 00000000
23 00000000 00000000
24 000600000 10000000
28 00000000 | 00000000
30 00000000 0000006000
33 60000000 600000000
32 0060600000 0000060010
31 00000000 000000600
34 00000000 000000000
35 00000000 000060000
36 00000000 00606000000
37 (00000000 000000000
38 00000000 000000000
39 000000040 000000000
40 0000000 000000000
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