Mansoura University
Faculty of Engineering
Dept. of Electrical Engineering

Third Year Exam (12/1/2014)

Full Mark: 70

Time allowed: 3 Hours

Electric Power Systems (2)

Please Answer The Following Questions:

Question #1: (20 Mark)

For the power system shown in Fig.1, the data of various system components are as follows:

G: 30 MVA, 11 kV, X= 0.3 p.u.

T1: 30 MVA, 11/33 kV, $X = 5 \Omega/phase$ referred to low voltage side.

T2: 25 MVA, 33/6.6 kV, $X=12 \Omega/phase$ referred to high voltage side.

Line: Z=4+j20 ohms/phase.

Load: S = 6 + j 4 MVA, 6.6 kV.

- a- Draw the impedance diagram with all values on per unit (Base 30 MVA and 6.6 kV in load side).
- b- Calculate the generator voltage and generator output power under loading conditions.
- c- Voltage regulation of the system.

Fig. 1

Question #2: (15 Mark)

For the power system given in figure 2, a 3-phase to ground fault occurs at the motor terminal, neglecting the prefault load current find:

(i) Subtransient fault current in kA.

(ii) Voltage of bus 1 in kV.

(iii) Momentary current of breaker A in kA.

Fig.2

Question #3: (15 Mark)

A Y-connected solid earthed voltage source with unbalanced voltage $V_{an} = 277 \angle 0^{\circ}$, $V_{bn} = 260 \angle -120^{\circ}$, and $V_{cn} = 295 \angle 115^{\circ}$ V. The source is connected to a Δ - balanced load through a line. The line impedance is $1\angle 83^{\circ}$ Ω /phase and phase impedance of Δ -connected load is $30\angle 40^{\circ}$ Ω .

- a- Calculate symmetrical components of the source voltages.
- b- Draw the sequence networks.
- c- Determine the source currents Ia, Ib, and Ic using the method of symmetrical components.

Question #4: (20 Mark)

The equipment ratings and per-unit reactances for the power system shown in figure (3) are as follows:

G1: 50 MVA, 11 kV, X1=X2=0.25, X0=0.08 p.u.

G2: 30 MVA, 11 kV, X1=X2= 0.2, X0=0.05 p.u.

T1: 50MVA, 11/220 kV, X=0.1 p.u.

T2: 30 MVA, 11/220 kV, X=0.08 p.u.

Line (L): X1=X2=180 ohms/phase, X0=550 ohms/phase.

The system operates at rated values and a single line to ground fault occurs at bus 1 through fault impedance $Z_f = j15 \Omega$, find:

- (i) Fault current.
- (ii) Voltage of bus 1 (a, b, c).
- (iii) Current supplied by G1 during a fault.

Fig.3

With My Best Wishes Prof. Dr. Mohammed El-Saied