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ABSTRACT- Many bicelectric signais result from the electrical response
of physiological system .te an impulse that can be internal (ECCG
signals) or external levoked potentials). A comparative study of
periormance of seven wavelorm estimation Lechniques used for
event-related signals that are time-locked to a stimulus is presented
in this paper. Computer generated signals and noise for several
signal-to-noise ratios (SNR's) are used Lo make ensembles of simulated
wisy waveforms. The performance of each Lechnique 15 numsrically
L igated using the roobt-mean-squared error and two well known SNR
= tors. The resulls show that an adapbive impulse correlated filter
(AICF} performs the best. It is capable to estimate the deterministic
component ¢f the signal and removes +the noise uncorrelated with
stimulus even if this noise is coloured.

I. INTRODUCTION

Among the most well-studied Dbioelectrical! signals are Lthe
event-related signals that are time-locked to a stimulus., The stimulus
is usually external (visual. auditory. or electrical in the case of

evoked potentials). In other cases the signal is related to an internal
stimulus. In these cases a time-reference peint can be defined from a
wave of Lhe same signal, as with QRS complex when analysing ECG
signals.

Bicelectrical signals are often contaminated by noise from various
scurceg. In general. an event-related signal can be considered as a
precess which can be decomposed into an iavariant deterministic signal
time-locked Lo a stimulus, and an additive noise uncorrelated with Lhe
signal: The most commen signal processing of this type of hicelectric
signal separates the deterministic signal from the noise. In recent
yearsg. a variety of techniques have besn described. Linear filtering ig
not possible in general. because the spsctra of signal snd noige
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overlap. The conventional ensemble average (EAR) techniqgue [1) is an
gffective metheod for recovering the signal hidden in noise. However, it
faiis in analysis of nonstimulus-locked or variable latency signals
unless latency wvariation is removed before averaging or time alignment
of signals is first performed as 1n the c¢oherent averaging (CA)
technique [2-4]. :

One of the tzchniques which attempted for the wvariability of
latencies was introduced in 1967 by Woody 1[5.6). Although the method
represents a significant step forward over ensemble and coherent
averaging. 1t may still leave buried 1in the noise much of the
information inherent in the signal. such as 1ndependent shifts in
latency and amplitude in the components of the individual waveforms.
Another technique was developed in which an evoked response is obtained
by weighting each single waveform prior te averaging (7|. The technique
is known as weighted averaging (WA) and the weights used must satisfy a
generalized eigenvalue problem involving the corretation matrices of
the underlying signal and noise compeonents in order (o maximize the
signal—-to-noise ratio {SNR) of the resulting average.

An adaptive impulse correlated filter (AICF) that can be applied
to evoked petentials and low-amplitude potentials that are time-locked
to high-amplitude wave of the ECG has been proposed by Laguna et al.
[8). The filter estimates the deterministic component of the signal and
removes the noise uncorrelated with the stimuius even if this noise is
colored [9). A spectral averaging (SA) technique was developed {10-12].
It uses a scaled average of the unwrapped Fourier phases of the noisy
signals and is shown to overcome latency variations.

Recently. Nakamura 1993 ([13). has developed a technique that
improves the signal-to—-noise ratio of repetitive signals with wvariable
delay. The technigue 15 based on bispectral averaging (B} and
racovers the signal waveform from a set of noisy signals with
variable latencies and does not require expliclt fime alignment of
gsignals.

The purpose of the present study is to compare quantitatively the
performance of seven different waveform estimation techniques. Fiwve
techniques, the ensemble averaging (EA}. the coherent averaging (CA).
the Woody's technigue (WT). the weighted averaging technique (WA) and
the adaptive impulse correlated filter technique {(AICF) are time doma:in
techniques and are i1ndependent of fluctuations 1n the bhaseline of Lhe
waveforms. The other two methods. the spectral averaging (SA) and the
bispectral averaging (BA) are Ppased on transformation techniques and
the baseline movements must be removed before application. Comparison
was performed by simulations of three different computer—-generated
signal sequences with uniform distribution signal delays and corrupted
with white or c¢oloured noise. Improvement of the SNR of the waveform
estimate is examined numerically by way of the root-mean-squared error
and two well-known SNR estimators. Advantages and disadvantages of the
seven technigues are discusged.

I1. THEORETICAL BACKGROUND

In this section, a description of each of the seven techniques is
reported. Since the theoretical backgrcund of these techniques has been
covered extensively in Lhe literature [(1-16), hence. only a brief
summary of some points relevant to each method is given.

Congider an ensemble of M of noisy waveforms:

T
X{t) = (%, (t) X, (£) cee X (8) ) (1



Mansoura Engineering Journal (MEJ?, Vol.19, No.4, Dec. 1894 E- 3

for the time being. we will assume the ith waveform. is a
continuous-time signal given by

Xt(t) = si(t) + ni(t) ¢t =0, 1, .... M {(2)
0 t= T
where sE(t) and. ni(t) are the respective “gignat" and “noise”

components in the ¢th waveform. This model has been widely accepted in
the literature. For the time being we make no further assumptions about
s{{t} and n, (t). The ensemble of constituent signal and noise

components are given by:

3(t) = s:{t) and N(E) = n‘(t) {3}
sz[t) nz(t)
SM(t) nM(t)

respectively. 30 that X{(t) = S(t) + Nit)

A- Enzemble Averaging

he average of the ensemble of M waveforms c¢an bs used as an
estimate of the signal

_ 1
yit) = -

[~1=

x, () (4)

o

-

It can be shown (1] that if N(t) is a =zero—mean stationary process.
uncorrelated from waveform to another and uncorrelated with S{t}), then
the ensemble average forms a consistent signal estimator. i.e.

E { y(t}}
1
Var { y(t)} - Var { n(t)} (6)

where E{y{t}} 15 the expected value and Var{y(t)} is the variance of vy
at instant t. Hence. it may Dbe concluded that the signal-to-ncise ratio

improves with a factor M2

The theory of ensemble averaging so far ¢onsidered has assumed
that the signal S{t) is invariant from waveform to waveform. If this
ware to be true. then averaging would probably be the optimum waveform
estimation technigque {(s¢ long as the average neise term N(t) tends to
zero as the number of waveforms M increases). This, however, is not the

case; in fact: there is considerable variability among an ensemble of
bioelctric waveforms.

It

Sty (5)

and

B- Coherent Averaging

Coherent averaging is a process whersby fixed intervals of a noisy
signals are aligned temporally with respect to a reference point and
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then summed {2]. In the ideal case. M averages will reduce the noise by

a factor of 1/Wf/z while leaving the signal unerfected (Eq.5). In
practice) " éertain/ ‘feathures “of“both' 'noise and signal may limit the
efficacy of coherent averaging. Thé two conditions for optimal
averaging are: 1} the nol1se contaminent must be both random and
stationary. and 2) the gighai of interest should be precisely
synchronized to a-.stable.nefeérence time. or fiducial peint. Variability
in this time rererence namely the tlme Jltter results in a distortion
"E2) e Ty }

C="Woody" s Cross-Correlation Method .

In the Woody' procedure (5], the dpdividual waveforms are aligned
to ‘one another "bafore averaglng The alignment 1is accomplished by
finding the latency shift that gives a maximum <cross-correlation
coefficient between the waveform and a templats formed by the averaging
of the previcusly aligned waveforms, The individual waveforms are then
corrected: for their average lafency wvariations and an average waveform
computed. By repeating this with the average signal used as the
template a further refinement in the latency estimates is obtained and
a new average signal computed. This iterative procedure leads to an
improved estimate of the shape of the signal when the only wvariable 1is
the total signal latency

D~ Welghted Averaging
The weighted ensemble average of M waveforms can be written as

5 & -yt = W Xt (7}
where W = [wl. Woo e wM] 18 the M-by-1! weight wvector. These
waights are shown to maximize fthe signal-to—-noise ratio (SNR) of the

resulting. average 1f they satisfy a generalized eigenvalue problem
invelving the correlation matrices of the underlying signal and noise
components. The signal and nolse correlation matrices are difficult to
estimate and the solution of the geperalized eigenvalue problem is

often computationally impractical for real-time processing [71.
Correspondingly. a number of simplifying assumptions abcut the s:ignal
and noise correlation matrices were made which allow an eff.cient
method of approximation. The method of optimizing the weights 1Is

described -in detail in reference [7} and the cptimal weights are given
by:

: bri T ' P
wo- XX (8)
I XX
whers division by the Euclidian norm. liEkT{| ensures that W has a

norm of unlty The constraints imposed in deriving (8) allow the weight
vector to 'be calculated with minimum amount of computational effort
even for” large valués of "M compared to what could be required to
compute W.

E- Adaptive Impulse Correlated Filter

The ‘ghjective -of the “adaptive impulse correlated filter (AICF)
technique 1is to adapt filter coefficients or weights so that the
impulse response of the desired waveform is acquired [8]. The filter
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Fig.l Block diagram of Adaptive Impulss Correlated Filter (AICF}

needs twe inpbuts: the signal (primary input) and another inpu
correlated with the deterministic component (reference input). The
primary input (Xk} is the consecutive linking of the M recurrences ol

the event-related signal we want to filter: Each event related signal
extends the interval of 1nterest following the stimulus and 1:
considered as a record of a random process. Let the waverorm span k = (
.. (J - 1) samples, and therefore the transversal filter will require
L weights. The reference input Dk is a unit impulse synchronized witth
the beginning of each waveform %y, (the stimulus). EBach recurrence { =
1, ..., M of the waveform results in a new reference impulse and a nev

update of all the filter weights (Fig.l). The output of this adaptive
filter Y, can be expressed by

L
Y T z o e = W D, (91
=1
T . -
where wk = {“ﬂk Y - ka] is the weight vector and Dk = [0, 0O,

1. 0]". The desired response is obtained by minimizing the mean

square error hetwsen the primary and reference inputs. Therefore., the
welghts are given by

wku =W+ 2 u €, (10)

where s = dk -y, and ¢ 15 the convergence factor. Ateach time step

only one filter weight is adapted. All the filter weights are adapted
once edach recurring waveform.

F- Spectral Averaging
A simple time delay manifests itself as an additive linear phase
in the frequency domain. Spectral averaging circumvents the problem of

variable latencies by averaging the phase harmonics 1in the frequency
domain. Consider an ensemble of noise-free waveforms

r.(ty = s.(t - Tt) To=1, 2, .... M {11)

0= t=T
where Ty is the waveform time delay. The Fourier transform of (11) is

R (@) = |R, (@)] exp(_iqbrt_(w)), L= 1, ..M (A2)
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where [R; (w)f = "|s, (w){

and - P, (w) = ¢s (w) — w7
L Bt

2
and where ¢ represents the Fourier phase. If we could now use these
phases, ?,. (), to compute ¢ _{w), where

o ST

¢ _(0) = ¢ lw) - w T (13
=13
¥
= 1
and T = — T,
M az t

b

then. the signal can be reconstructed at 1ts mean delay.

=1
st - 7) =PF { | Stw)| expi(ie (w])} {14)
-1 S?
where Fﬁ stands for the inverse Fourier transform of the quantity in

brakets. We cannot simply average the principal values of the waveforms
¢P(wi to produce ¢_(w] since. in general, averaging principal velues
L

5T
gives a biased estimate o¢f the principal wvalue of the average. Two
different approaches are to be followed to implement the
spectral averaging technique [11]: the unwrapped phase method and ths

phasa vector technique.

G- Bispectral Averaging

Bispectral averaging 15 used to recover the signal wavetforms from
a set of observed nolisy signals with wvariable delay. The bispectrum 15
the Fourier transform of the triple correlation {(1l4}). It 15 related to
the Fourier coefficients by

¥ u.v) = X(uw) X(v) X(~u ~ v) (15)

where X(u) is the Fourier transform of x(t}.

X(w) = [ x(t) exp(-2rjut)at (16)
If the signal x(t) is real, then

Xi~u) = X () (17)

where * denotes complex conjugate.

The bispectrum can recover information about both amplitude and
phase ¢f the Fourier transform of the signal. Several procedures for
the recovery of the Fourier amplitude and the Fourier phase from the
bigpectrum have been reported [15.16). These can be roughly classified
into twoe basic approaches; oneé 18 referred to as the recursive method
and the other as the least squares method.

To perform the bispectral averaging. the first step is to compute
the Fourier transform of the nolsy signals. Before computing the
Fourier transform. the mean values of the neolsy signals must be
removed. The bispectrum is computed using (15). Bispectra are then
averaged for the ensemble of noisy signals. Fourier amplitudes and
phasss are recovered from the ensemble averaged bispectrum. Finally.
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signal recovery is performed by the inverse Fourier transform and the
mean value 15 added. Recovering the amplitudss and phases 1s performed
using the recursive method (16}, It 1s based on (15). The amplitude of
the bispectrum is given by

afu,v) = A(u)A(v)A(- = — v) (181

where a(u.v) and A{u) are the bispectrum amplitude and the Fourier
amplitude, respectively. In discrete notation. Eq.(17) is written for
real signal as

a . = A A A (19)
.l vy oL

wherse aLj and Aa represent the sampled bispectrum amplitude and the

sampled Fourier amplitude of a signal. respecitively. In (19). we used
the fact that, for a real signal x(t)., A = A_ . From (19). the Fourier

amplitudes A(kK), (k = 2, 3, .... N} can be obtained recursively except
the amplitude A;‘ where ALtﬂ = 1, 2, .... N) are assumed tc bs nonzero.

As proposed in the literature (161, Al can be calculated by

p g

(o )s o
A = |: i,1 5,1] (20}

2.4 z.2

Ao can be determined by the sample mean (16].
Similarly, from (15) the phase of the bispectrum is given by

Alu,v) = 2{u) + ¢(v) — $(u + v) (211

where {3(u,v}) and ¢{u) are the bispectrum phase and the Fourier phase.
respectively. In discrete notation. (21) is written as

ﬁh' = ¢ F ﬂ - ¢ (22)

(S|

where ﬁij and @, represent the sampled bispectrum phase and the

sampled Fourier phase of a signel. respectively. In (21}, we used the
fact that for a real signal x(t), ¢L = *¢ﬂ- By setting « = 1 in (22},

ws obtain the following equation for j = 1. 2. ....,N - 1;

e ..= ¢1 + ﬁ - ﬁLj (23)

1t

N is the total number of Fourier phase unknowns., From (23), the Fourier
phase ¢k (x =2, 3, .... W) can be obtained recursively except for the

phasa ¢‘. The phase ¢, can be set arbitrary. for instancs. e = c.

I1YI. SIMULATIONS

Computer simulations have been conducted with three different
signal sequences which are shown in Fig.2. The curves were generated
using the following sguations:
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s, (L) = exp(—-2t) sin(dnt) {24)
Sz(t) = {4t)exp{—-8t) {233
Sa(t) = [t{t - 0.9)(t -~ 2.4) + 0.1t]) expl(—-(t —1.2)21 (26)

The curves consisting of 25 points were generated at .05 intervals.
The mean values of s, (L). s {t) and s_(L) are 0.085. 0.336, and 0.189,

respectively. The maximum absolute wvalues was normalized to 1.0. A
random delay with uniform distribution 30 time-—unit points wide was
given and centered at the time unit 20. A trace of 64 samples was used.

The techniques were 1nvestigated in the presence of nolise. Two
types of noise were generated: white and nonwhite (Fig.2}. To
accomplish this. =zero—mean Gaussian random numbers with a standard
deviation o 0.2 were generated and superimposed to the original
signal sequence using different values of SHR's. Nonwhite noise was
generated by filtering the white noise sequence using the following

11-pgint filter [17):
5
- 1 w (27}
Yo 429 1 Tnei z
==
where a_ is the nth random number, ¥, 1% the nth output of the filter.
W M oWy = B9 w = 84w, = 69, w = 44, w = 9. and Wy = =36,
“W {a) -Ji(h) w] (¢l
"1 an /\
| * |
"] an ] 1'1
oxI i
-an — 53 | 1 .
Y o WY
T a4 | \_‘___ﬂ f { '
-0 = 'y '“T'_'_'_' - LR ~—-*,5 t l—w — —_H,
sarmplaa imple sgrmplag
(d) 1 (&)

Q

00

A S M

B+ ™
& 0 0 0

samplas

T T
10

50 2

n]h_gf\hfvﬁuxJﬁ\/\Jhﬂgx

T T ———
o w0 5a &0
samples

Fig.2 Original signais used in simulationz of computer—generated data

{@} Signal s‘{t).

noise., and

(b) Signal sz(t).
ig) Coloured noise

{€) Signal 33(t]' {d) White
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(a} (b) ) .
590 1 s (t) - 1White noise
w00 ' Coloured noise - - -
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2 ) wa
o3 H
! s,(t) e
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2004
10.0
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i A
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Fig.3 (a) The Fourier spechtra of si(t). sz(t). satt)
{b) The Fourier spectra of white and nonwhite noise

Fig.3 shows the rourier amplitudes of s (t). s, (t). sa(t), the white

noise sequence and the nonwhite noise sequence. The simulations wern
performed for three wvarious signai-to-noise ratios (SNR's). For each
SNR  wvalue ensembles (each consists of 50 noisy signals) were
generated. T SNR here 15 defined as follows:

M 7//24 sa
1 z z
SNR = - Z { kzcs (k)/JZOn () } (28)

where M is the number of noisy signals to be averaged. s(k) represents
the sampled curve in Fig.2. and n(j) represents the noise.

IY¥. BRESULTE

The sewven waveform estimation techniques outlined in Sec. Il have
heen applied to the simuiated ensembles of the thres signals generated
in the way described in the previous section. Figures 4-6 give examples
of the estimated signals for a bypical SNR value. In the {igures. the
position of the estimated waveforms are abitrary shifted. Freom the
figures it is clear that technique EA fails completely to retrieve the
three waveforms s (t). s, () and sa(t). while technigque AICF recovers

successfully the three waveforms. Table I shows some numerical results
for s (t}). s, (t). and 5,(E) corrupted with white and nonwhite noise.

The results consist of the mean values of the 50 individual normalized
roct-mean—squared errors (RMSE). It is calculated from

i4a 40 =3
Y yitk - 19) « E {s(k - 19) - y(k - 1917 + Zyz(k - 19
RMSE - =0 k=1¢ =dd

24
z
J ) s (29)

k=0
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(a) (o)
(£}
{b}
r\/\/‘% \f\Nm"Mww\
(q)
- ‘r’/\/\",H\OW\
1 {h
N
(d) 4 N
M/\/\,JL/\V‘[\‘/\ N il, '| MW“\,M\A
4 F \
‘L 10 i 10 o 0 W 'El—'_r _F“T —}r-—_.;; W
samples

samples
Fig.4 Noisgy signal sl(t} and the recovered waveforms. (a) The signal
with additive white noise (SNR = 0 dB), (b) recovered signal wusin
ensemble averaging. {c¢) wusing coherent averaging, td) using Woody's
technigque. (e) using weighted averaging. () using adaptive impulse
correlated filter. (g} using spectral averaging, (h) using bispectral

avearaging.

(a)

(aJ'
-/'\/V\\%

N3
{bj e

I/' ;

| \J\rAJVU\“va\AﬂA
(¢) :{g)

{d) ](h)
]
w18 %6 ! F I R YA AR N4
somplas

» W
samples

Fig.5 Noisy si
- gnal s_(t) and the rocov
ared .
as in Fig.4. 2 waveforms. The same captions
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Ll t ;I 4 ET] i P n o rARSar

samples samples

Fig.6 Noi i
g_ 15y signal salt) and the recovered waveforms. The same captions
as in Fig.4.

where yi{k) denotes the recovered signal and 1s arbitrary shifted in
time so that a cross correlation function has a maximum value. The
cross correlation function here is in the form of

24

eun=z S) ylx + 7). T =0, 1,2 . ..., 127
k=O (301

In order to quantify the pearformance of one technique relative to
another., two well known 3NR estimators were used. These estimators
compute an estimace of the SNR of a pair of noise ¢orrupted signals x,

and x_. that have been sampled n times (18.191. The first is the

so—called maximum likelihood estimator. given by
H

2 X .
SNR. = il (31)

1 2
X

]

¥

e

=1

Yhers x and X, are the ith samples of x, and x , respectively. This

estimator Is asgymptotically Gaussian for finite N [(18]. The second
estimator that was used is based on the sample correlation coefficient
betwean x and X,
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Teble I Results of the meen wvaluea of BMSE obtained from 50 sets of
noisy curves g (L), s, (t) and s {t) [or various wvalues of SNR's (vhite

and cotoured noise)

Tech-] SNR = 2 {3 dbJ SNR =1 (0 db? SUR - 0.5 (-3 4B)
Noise|nique * = :
Type s {t) 8 (1) s (L) [= (W) s (t1 s It) B Ity g () 5 (L)
EA 0.46 - - - - - 0.49 - -
E Ch 0.04 0.08 0.05 | C.04 Q.67 0.05 | 0.15 0.29 0.17
1 WT 0.22 0.37 0.15 | 0.27 0©.45 0.23 - - 0.45
E whn | 0.33 0.39 o0.26 | 0.33 - 0.26 | 0.45 - 0.50
AICF| 0.15 (.28 0.2v | 0.14 0.24 0.189 | 0.39 - 0.48
SA 0.25 0.43 a.37 0,35 - 0.45 - - 0.34
BA 0.19 4.3 ©0.28 | 0.32 0.38 0.38 - - 0.40
EA 0.37 - 0.42 - - - Q.46 - -
o ca 0.03 0.05 0.02 | 004 0.07 0.05 [ 0.09 0.19 0.12
g WT 0.22 0.4 0.26 | 0.24 0.4y 0.23 - - -
W Wi 0.39 - .30 | 0.32 - 0.39 | 0.3% - 0.37
v AICF| 0.09 0.1B 0.12 | 0.14 0.14 0 18 | 0.19 ¢.20 6.17
T Sh 0.35 - 0.43 | 0.35 - 0.45 | 0,37 - -
£ BA | 0.23 0.21 0.41 | 0.23 0.30 0.38 | 0.43 - -
~ indicaktes fallure in the si1gnal recovery processes
2]
X X_.
1L 24
=1
r = t . {32)
?//zu N
2 2
2 Xxi, 2 XZJ
v=1 A=1
The SNR estimator is then given by
SNR_ = 4 —= v B (33
r 1 - r )
where the constants
A =2 a s i 1 —2_ 4] 3
- ——— n 5= — - —_— -
exp N ——— a = exp [ N = dJJ (34}

The constants A and B make SNRr unblased for finite. through large

values of N (19). In each case. the SHR estimates were computed for N =
64. These SNR estimates were computed from all wawveform estimates and
subsequently averaged to form a more stable measure. The results are
tabulated in Tables II and III.

In the signal estimation processes [or the 30 enzgembles of data.
if the RMSE value became more than 0.5 and the wvalue of the estimated
SNR was less than that of the original noisy signal. then it was
considered that the signal recovery failed. SHR's wvalues greater than
10 were considered as successful recovery and are denoted by (*).

The results in tables I-III reveal the following:

1) Regarding the signals c¢ontaminated with white noise, the CA approach
demonstrates the best performance 1n recovering the true signals s (t),

sz(t] and sgttl. The AICF technique shows better performance than other
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Table [T Resultg of the mean valikeg of the SNR“ estimates obtained from
50 seis of noisy <urves sl(L). a:(tl and sﬂtt) for warious walues of
SMR's (white and coloured noage)

Teeh-] SNR = 2 (3 a8 TR0 4B SR = 0.5 (=3 4B
Hoies ?;g:e sl(:f 5,(01 5,10) slctm\sztta 5,0 p (0 ‘sztt) 5, (D)
EA | 2.82 - - - - - 211 0.99 1.64
: CA . . . - - " - - -
I WT | 3.66 3.37 2.42 | 3.83 1.45 3.28 | 4.13 L.77 3.03
; WA i.64 - 3.3¢ | 7.98 1.33 6.16 | 3.01 1.13 7.82
AICF| - . . . . - . 5.38
sa | 2.83 - 2.96 | 2.97 - 3.05 | 2.94 0.99 4.29
an | 5.13 1.73  2.51 | =  2.28 2.36 | z.87 2.33 5.06
EA | 2.7L - 2.2 | 1.58 - - 2.99  0.91  2.3%
M A - - - - - - . - -
ﬂ Wr | 3.65 2.92 2.82 | 4.98 3.55 3.28 | 3.10 1.97 3.23
W wh | 3.37 - 3.62 | 3.85 1.33 3.55 | 2.47 0.97 2.54
? AICF| = - . . . . - 7.6 =
i shno | 277 - 291 | 5.54 - 3.14 | 2.94 0.89 3.89
E BA | 5.62 2.27 2.13 | 5.8L 2.28 2.36 | 2.78 1.56 2.74

~ indicates SNHR's valuas greatar than lO.
- 1mdicates SHR's valuesg less than that of the origical noisy signals.

technigues. The RMSE wvalues show failures in signal recovery process of
s,{t) for &all technigues except the CA (for SHR = -3dB). Furthermore.

techniques WT, SA and BA fail in the recovery of the three signals when
SNR = = 3 dB, As for the SNRM and SNRr values, techniques WI. WA and BA

oifered higher values than those obtained by the SA approach. Technigue
A possesses bhoe worst performance.

2) Comparing the RMSE wvalues obtained for the case of coloured noise.
the CA technique shows aiso the best performance. Here. again the AICF
demontrates petter results than other techniques. Failures ia the
signal recovery of the signal sz(t! happen in bocth WA and SA approaches

even for SHR = 3 dB. Techniques WT. SA and WA show better values of Lthe
SNRM and SNRr estimates than SA. Again. EA shows the worst performance.

From Tables I-III and Figures 4-6. it can be seen that the AICF
approach can recover a signal wavetorm with recognizable features for
the cases that the jitter was severe enough to obscure the signal and
the signal-to-noise ratio is relatively low (white or coloured noises).

From the point of view of programming the techniques, the AICF is
simpler than WT. WA. SA and BA. Alsc, computation time of AICF 1is
fastsr.

Y., DISCUSSION

The performance of seven techniques of improving the signal-te
noise ratio of biocelectric signals with variable latency has been
numerically investigated using computer—-generated signals and noises.
The numerical values have shown that the technique based on adaptive
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Table [I1 Results of the mean wvalues of the SHRr estimates obtained
from %0 sats of noigy curves a‘(tl. sztt] and Sl(t) for various wvalues
af SHR's twhite and coloured nopigel

—[Tech-] SWR - 7 (3 4B SNR_= 1 10 dBy SNR_= 0.5 (-3 4B
Hoisé g;g:e S0 5. () 5, (L) (5 (6] a1t} 5,1t} B (€] s, (L) s (€
EA | z.21 - - - - - 260 0.91 2.49
: ca . N - . . . . - .
1 WE | 3.94 2.04 2.63 | 4.30 1.12 2.97 | 4.45 1.75 2.3
E WA 2.5 - 263 | 7.76 1.22 6.43 | 2.46 1.02 4.05
ALCF| - . . . - . . 7.22 .28
sa | 229 - 2.61 | 2.49 - 2.79 | 2.11  0.98 2.86
BAn | 5.52 1.63 2.33 | 2.15 2.36 | 2.23 1.64 4.72
EA 2.26 — 2,46 - = - 2,32 0.83 2.64
N Ch - [ » - - - - - -
M wr | 3.96 2.29 2.62 )| 4.90 3.28 2.97 | 2.3 1.74 3.67
W Wh 2.48 - 3.39 2.86 L.d2 d.60 3.37 1.51% 3.62
T AICF| = - . . . - . 5. 10 .
T S5a | 2.24 -~ 2.55 | 4.35 - 2.79 | 2.15 0.83 2.83
E pa | 5.05 2.15 2.18 J 6.15 2.1¢ 2.03 | 2.84 1.54 2.02

« indicates SHR's values greater than 10.
- indicates SHR'3 walues less than that of the original noisy signals.

impulse correlated filter (AICF) was the most efficient technigue r
racovering a signal with recognizable features even 1f the CZHR 13
relatively low and the signal 1s embedded in white or nonwhite noise.
Although coherent averaging technique gives smaller RMSE values
and higher SMR's values. synchreonization of the dirfferent waveforms to
a stable time reference 1s difficult for biclogical signals for two
regasons. First. an invariant fiducial point cannot be found o1 =
vaveform because «chey continually wvary 1in time. Second. t

between fiducial peoints is wvariable: even if ' he fiducial points 8
invarilant and could be found with perfect acor acy eaclh oycle, 5
ne assurance that the signals will be sta.le with that refer :

Moreover. coherent averaging needs s large (umber of records to oebtain
a good estimation of the signal. aud cannot show eventual dynamic

variations of the signal shape.

The three techniques of Woody, weighted averaging and bispsctral
averaging present a better performance than technigue of spectral
averaging. The improvement resulting from the technigues of spectral
and Dbispectral! averaging 15 hardly Justified Dby the increase 1n
computational complexity assccilated with their implementation.

These results will be wvery userful for recovering low—amplitude
event-related vioelectric signais embedded in white or nowhite noise.
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