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Abstract 

Exact and numerical solutions for steady heat conduction in the enclosure between two long isothermal elliptic 

tubes with uniform internal heat generation are obtained. Heat conduction process within the enclosure is mainly 

influenced by internal heat generation, axis ratio of inner tube and major axes ratio of the two tubes. The 

solutions are obtained in terms of the temperature and local heat flux distributions. The study has shown that the 

numerical results are in excellent agreement with the analytical results. 
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Introduction 

 

Heat transfer within annular enclosures has received 

considerable attention due to number of engineering 

applications that include thermal energy storage 

systems, nuclear reactors, solar energy collectors and 

some others. In such applications heat energy 

transfers within the enclosure, that contains initially 

stagnant fluid,  by one or more of the three well 

known modes of heat transfer. Although free 

convection is the main mode of  heat transfer in most 

of such systems, the conduction mode of heat transfer  

is the dominant mode in good number of practical 

situations. The proper design of such thermal systems 

necessitates accurate prediction of the heat transfer 

rate in either mode and also  necessitates 

determination of the condition of mode change. This 

definitely will depend on the type of fluid, fluid 

properties, gap geometry and temperature difference 

[1, 2].  

    Several previous theoretical and experimental 

studies have investigated pure or coupled modes of 

heat transfer between isothermal annular enclosures 

(see for example [3–13]. In case of pure conduction 

heat transfer in annular enclosures little work has 

been found. Exact solution exists for conduction 

between two concentric and eccentric cylinders with 

internal heat generation in [3]. Exact solution for 

conduction from two adjacent spheres without  heat 

generation has been obtained in [4] while exact 

solution for conduction heat transfer between two 

eccentric spheres with internal heat generation is 

obtained by Alassar [5]. It seems, as far as this author 

knows, that the exact solution for heat conduction in 

the enclosure between two isothermal concentric and 

confocal elliptic tubes with internal heat generation  

 

 

 

has not been available so far. Therefore, beside 

considering the numerical solution, the exact solution 

of the problem will be obtained. The solution is 

presented in terms of the temperature and local heat 

flux distributions along the walls of the enclosure. 

     The elliptic enclosure geometry can be generated 

in different ways. In this study the geometry is 

determined by two parameters which are  the  axis 

ratio of the inner tube and the major axes ratio of the 

two tubes.  These two parameters can be varied in the 

parametric study to cover elliptic enclosures that 

range between two limiting cases, the first is the 

enclosure  between two concentric tubes while the 

second is the enclosure between a flat plate and 

elliptic tube that surrounds it.  

 

Problem Formulation  

 

 
Fig. 1 Physical domain and coordinate system 

 

 

 

Consider the annulus between two isothermal, 

concentric and confocal long elliptic tubes shown in 

Fig. 1. The heat is generated within the fluid 

contained in the annulus at steady rate qv and then 
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transfers within the annulus by conduction and 

dissipates to the surrounding environment. The 

temperatures of inner and outer surfaces of the 

annulus are kept uniform at Ti and To, respectively, 

with Ti > To. The resulting thermal field would be  

initially time dependent until it reaches the steady 

state after a period of time. The steady state solution 

can be directly obtained by solving the steady state 

conduction equation. However, this study considers 

the solution of the time dependent equation as 

convenient and less expensive route to the steady 

state solution. Assuming constant physical properties 

of the fluid in the gap the time dependent conduction 

equation can be written in Cartesian coordinates as: 
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where   is the time, T  is the temperature,  ρ is the 

density, cp  is the specific heat, pck  /   is the 

thermal diffusivity,  k  is thermal conductivity and 

vq  is the rate of heat generation per unit volume . 

The above equation can be rewritten in dimensionless 

form as  
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Where G is the heat generation parameter. For proper 

analytical and numerical treatment of the problem the 

elliptic coordinates  ,  are  adopted. These 

coordinates are defined as :  

  coscoshix  ,  sinsinhiy  . Where 

i   is the eccentricity  of inner tube.  

In elliptic coordinates equation (2) reads 
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Where J  is the Jacobian of  transformation matrix. 

In the new coordinates, the steady boundary 

conditions can be expressed as 1  on i   and 

0  at  o   where i  defines the inner tube 

surface ( )Artanh i
1  while o defines the outer tube 

surface )Artanh( o
1 , Ari, Aro, are the axis ratio of 

the inner and outer tubes, respectively. 

 

 

 

 

 

 

 

 

 

Solution procedure         

 

The solution proceeds by assuming the distribution of 

dimensionless temperature as an analytical function 

represented in terms of  Fourier series as:  
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where Ho and Hn are the Fourier coefficients and N is 

the number of terms considered in the Fourier series.  

Substitution of   defined in eq. (4) in eq.  (3) and 

integrating the equation ( after multiplying by 1, cos 

n , one at a time) from 0 to  2  results in the 

following two differential equations: 
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Where,         δn,2 ={
           
           

  

The steady boundary conditions for all Fourier 

functions presented in equation (5) can be  expressed 

as: 

-At =i               2,0  on HH                      (6a) 

-At =o            0,0  on HH                        (6b) 

Eqs. 5a,5b along with the boundary condition  (6) can 

now be solved to give Ho and Hn  which are then used 

to give the temperature distribution. 

 

 
Fig.2 Time variation of numerical dimensionless 

heat transfer rates from inner and outer walls. 
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Numerical solution 

 

The numerical analysis proceeds further by 

discretizing equations 5a-b using Crank-Nicolson 

finite difference scheme. The discretization is carried 

out over uniform grids in  direction and with equal 

time steps till reaching the steady state solution. The 

time step is selected very small to ensure the 

accuracy of the numerical scheme. The resulting  tri-

diagonal system of  equations has been solved by Tri-

Diagonal Matrix Algorithm, TDMA 

 

Analytical solution 

 

Setting the local time derivatives in  eqs. (5a,5b) to 

zero and using boundary conditions (6), the steady 

state analytical solution of dimensionless temperature 

distribution is found as : 
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It should be noted the above solution of non-

homogenous PDE (3) is found to be identical to the 

analytical solution that obtained using Finite Fourier 

transform associated with Sturm-Liouville system 

that results from separation of variables to 

homogeneous form of PDE (3).(see [14]) 

 

Heat transfer parameters 

 

After obtaining the numerical and analytical 

temperature distributions, the  heat transfer 

characteristics are easily determined. The heat 

transfer results are presented in terms of 

dimensionless local heat flux distribution along inner 

and outer walls and dimensionless total heat transfer 

rates from  inner and outer walls.  

The dimensionless local heat flux at the inner and 

outer walls are defined as : 
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where Pi and Po are the perimeters of the inner and 

outer elliptical sections. Sn is the local direction of 

local heat flux normal to the wall.  refT oi TT   is 

the reference temperature difference.   From the 

above definitions, one can deduce: 
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Defining the dimensionless rate of heat transfer as 
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perimeter of the elliptic section. The dimensionless 

rate of heat transfer at  inner and outer walls can be 

expressed as: 
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The application of the first law of thermodynamics 

entails that in the steady state condition:  

totvio QdVqQQ   . It should be noted that 

the value of 
 
Qo is always positive, meaning that heat 

transfer dissipates from the outer wall with and 

without heat generation while  the value and sign of  

Qi depends on the  heat generation parameter G. The 

value of G above which the heat dissipates from the 

inner  wall is found from the analytical solution as : 
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The critical value for G as it appears in eq. (10) 

depends only on the ellipse geometry parameters Ari 

and Mr, where it increases as the former increases 

and decreases as the later increases 

 

Results and discussion 

 

Before proceeding to produce the final results, the 

numerical and analytical results for steady state 

solutions of some test cases are obtained and 

compared with each other and almost identical results 

are found. Of special interest was the comparison of 

present results with the well known analytical 

solution for the case of 1-D heat conduction in 

cylindrical concentric enclosure with and without 

heat generation. The comparison has shown that the 

present analytical results are identical to that of 1-D 

conduction while the present numerical results shows 

almost identical results to the known solution of 1-D.    

     Fig.2 shows a sample of numerical results in case 

of no heat generation, G=0 and in case of heat 

generation at G=2. The figure shows  the time 

variation of heat transfer rates to/from inner and 

outer walls. In case of G=0 the heat rate from inner 

wall decreases with time while the heat dissipated 

from the outer wall increases with time till it almost 

equals that of inner wall at the steady state. While in 
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case of G=2 the steady state heat rate from inner 

walls is negative, meaning that this heat dissipates 

from the wall, while the heat that dissipates from the 

outer wall increases continuously till reaching the 

steady state value. The figure also shows that the 

steady state analytical solutions are almost identical 

to the numerical ones. 

 Table 1 shows the steady heat transfer rates from the 

inner and outer walls at Mr=2.5 and Ari=0.5 for 

different values of heat generation parameter, G=0, 

0.5, 2, 5. The table shows that in case of no heat 

generation, G=0,  the heat transfer rate from the two 

walls, which in this case  is due to temperature 

difference between the two walls, is positive and 

equal which means that the heat enters the annulus 

from inner wall and leaves or dissipates from the 

outer wall. In case of G=0.5, the heat rates are still 

positive which means that the heat is still entering the 

enclosure through the inner wall and dissipates from 

the outer wall after adding the heat generated in the 

enclosure. While in cases of G=2 and  5, the table 

indicates that the heat is dissipating from the two 

walls.   It can be inferred from these results that there 

would be  a critical value for G between  0 .5 < G
*
 < 

2 above which heat conduction starts dissipating 

from the inner wall. This value is obtained from eq. 

(10) and equal to G
*
= 0.9809 for this particular case.   

 

 
Fig. 3 Distribution of  temperature in the gap 

along major axes at different values of G 

 

Fig. 3 shows the temperature distribution in the 

annulus gap along the line that coincides with the 

major axes of the two tubes (θ=0) for the case of ( 

Ari=0.4 and Mr =2.6  and at different values of G). 

The figure shows that at G=0 the temperature 

gradient is negative at the two walls which indicates 

that local heat enters the enclosure from the inner 

wall at that point and dissipates from the outer wall. 

With the presence and increase of internal  heat 

generation parameter G  the figure shows that the 

temperature within the enclosure along major axes 

increases, attaining maximum value and establishing 

positive temperature gradient at the inner wall and 

negative gradient at the outer wall. Such temperature 

distribution means that the heat flux (and thus heat 

transfer) dissipates from the two walls. The figure 

also shows that the position of maximum temperature 

moves towards the outer wall as G increases.  

a) 

 
b) 

 
Fig. 4 Heat flux along a) inner wall,  b) outer wall 

at Mr=2.6, Ari=0.4 and different values of G. 

 

Fig. 4 shows  the dimensionless heat flux distribution 

along inner wall (Fig. 4a) and outer wall (Fig. 4b) for 

the same cases presented in Fig. 3. It can be seen that 

as G increases the absolute value of heat flux 

increases at the same point (i. e same θ) on the wall. 

It can be also observed that in case of G=0 the heat 

flux is positive along the two walls, implying that the 

heat enters into the enclosure from the inner wall and 

dissipates from the outer wall.  while for G=2, 6,10 

the heat flux is negative along the inner wall but 
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positive along the outer wall which means that for 

these later cases the heat  dissipates from the two 

walls. It can be also inferred from Fig.3 that the 

critical value for G lies between  0 < G < 2 . This 

value for this particular case is equal to 8445.0* G . 
 

Fig. 5 presents the isotherms pattern for the case of 

(G=10, Mr=2.5 and at different values of Ari 

,(Ari=0.005, 0.35, 0.7, 0.998). The case of Ari=0.005 

represents the case of an enclosure between a flat 

plate and the surrounding elliptic tube while the  case 

of Ari=0.998 approximates the case of concentric 

annulus. The figure clearly shows once more that the 

analytical solution of temperature distribution (right) 

is almost identical to numerical solution (left).  The 

formation of sub-closed contours is only observed in 

the wide parts of the annulus near θ=90 while such 

contours do not appear in the narrow parts near θ=0. 

The effect of geometry on heat rates Qi and Qo is 

presented in Tables 2 , 3. Table 2 shows  the effect of 

Ari on the rate of heat transfer from the two walls 

and the total heat transfer rate in case of G=10, 

Mr=2.6 while Table 3 shows the effect of Mr on heat 

rates in case of (G=5, Ari=0.6). Presented in the two 

tables the critical value G
*
 for each geometry  (Mr, 

Ari). Table 2 shows that for the same Mr as Ari 

increases the heat dissipated from the inner wall 

increases while that from the outer wall decreases 

and the total heat rate decreases. The increase of Ari 

at same Mr decreases the total volume of the 

enclosure and thus decreases the total heat 

generation. Table 3 indicates that for the same Ari as 

Mr increases the heat dissipated from the two walls 

increases as well as total heat rate. The increase of 

Mr for the same Ari increases the total volume of the 

enclosure and thus increases the total heat rate. 

 

Conclusion 

 

Exact and numerical solutions for steady heat 

conduction in the enclosure between two long 

isothermal elliptic tubes with uniform internal heat 

generation are obtained.  The solutions are obtained 

in terms of the temperature and local heat flux 

distributions. The study has shown that the numerical 

results are in excellent agreement with the analytical 

results. 
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a) Ari=0.005                                                     b) Ari=0.35 

 

                        
c) Ari==0.7                                                          d) Ari=0.998    

Fig. 5  Patterns of analytical isotherms (right ) and numerical isotherms (left) for the case of G=10,  

Mr=2.5  and at   a) Ari=0.005 (almost flat plate), b) Ari=0.35, c) Ari=0.7,  and         d) Ari=0.998 (almost 

circular cylinder) 

        

       Table 1 Heat rates Qi and Qo  at (Ari=0.5 Mr=2.5) at different values of G. 

G=5 G=2 G=0.5  G=0 Q 

 -6.988  -1.772 0.836 1.705 Qi 

 19.827  8.954 3.517 1.705 Qo 

 26.815  10.726 2.681 0 Qtot 

 

        Table 2 Heat rates Qi and Qo at (G=10, Mr=2.6) and at different values of Ari 

Q 
Ari=0.3 

G
*
=0.808 

Ari=0.5 

G
*
=0.880 

Ari=0.7 

G
*
=0.947 

Ari=0.9 

G
*
=1.099 

Qi -16.83 -17.07 -17.39 -17.81 

Qo 43.05 41.67 40.60 39.83 

Qtot 59.88 58.74 57.99 57.64 

 

         Table 3 Heat rates Qi and Qo at (G=5, Ari=0.6) at different values of Mr 

Mr=5 

G
*
  = 0.183 

Mr=4 

G
*
  =0.306  

Mr=3 

G
*
  =0.615 

Mr=2 

G
*
  =2.049

 Q 

-28.761 -19.197 -10.809 -3.295 Qi 

91.628 56.186 29.561 12.030 Qo 

120.389 75.383 30.370 15.325 Qtot 

 


