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ABSTRACT

In the present paper, an exact analytic appreach is obtained
for solving inverse problems of steady, two-dimensicnal, heat
conduction in a composite, plane or cylindrical media, by
developing analytic methads of solving inverse problems for

single-wall geometric shapes : plane wall and hollow cylinder. The
present method is further extended to treat the preblem if the
composite media involves internal heat generation, Solved examples
are presented Lo demonstrate application of the proposed method as
wall prove Lts validity.

1. INTRODUCTIOM

In the solution of direct heat conduction problems, the
ocbjective 13 Lo determinate tLthe interior conditions Ci.e..
temperature and-or heat fluxd when the boundary conditions are
prescribed over the entire surface. Conversely, in the inverse
problems one segeks the boundary conditions when tLhe interior or
the back surface conditions are prescribed (1]). Generally,  direct
problems occur mainly in design applications while inverse
problems are encauntered in analysis of experimental data. [1.Z2]3.

The inverse problems are classified in heat conduction
literatures to steady: and transient problems [2). In the last
few years, Lhere has been considerable interest in the solution of
the transient inverse problems. Most of those studies hawve been

performed numerically Ce. g., (2-~41). while the analytic ones
Ce. g., [5,63 are still scarce and restricted te the
one—~dimensional case due Lo the difficuliy of a multi-dimensional
solution (3). Further, a limited number of appreoaches (e.g.. (112

are availlable in the literatures for the inverse solution of
Ltransient, one-dimensional problems -in composite media.

Recently, exact analytic methods have been presented in a

series of papers (7-11) to handle {nverse problems in steady.
two—dimensional heat conduction for simple shapes : a planar wall
and a hollow cylindraical wall. The purpose of Lhis paper 1= to
develop an analytic approach for solving inverse problemns of

steady. two-dimensional heat conduction 1n a composite wall by
sxtending analytic methods developed for a single plane wall
(7.8), and for a single cylindrical wall [9,113.
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2., MATHEMATICAL FORMULATION FOR A COMPOSITE PLANE WALL

Censrder a two-dimensional, m—lavered composite wall ¢ height L
and thickness Xm3 consisting of m pglane layers from different

matertals having constant thermal properties. Figure 1} shows the
geometry and coordinate system.. The distribution of each the
temporature and its gradients at the exterior boundary surface
CO,yd; both are known continuous funcitions of Lhe vy coordinate.
The maln aim is Lo determine the (x.y) field of temperature in the
composite wall using only these Lwoe known boundary condiitions.

¥
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Fig. 1 The geometry and coordinate system
for a composite plane wall

The mathematical formulation of Lhis problem may be modeled by
Laplacrs equation

2z

@
-
Y
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Yo =0 in  x £ x = x and 0 £ y = L. caz
2 2 -4 S

o 3y

with the known boundary conditicons

T,CO.y) = oCyd, c2a0
ot Lo cabd
* = - = [0 V1
3% K y
L] EY

and the unknown interfacial boundary conditlions

Tx ,¥v2 =T Cx ,¥y2, for o+ = 1.2,3,....,m1 <3ad
. S L+ 4 L
1 1
= | = ——3' i i = 1,2.8,.....m-1. C3b)
kL ki*; with L 1.2 m
® E

L i

Condition C3b) can be expressed in an alternative form as

g Cx. ,¥2 = g {(x ,yD, with o+ = 1,2,3..... ~m-1 <3k 2
~ [ AN

»
L (e §
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where the npotions @ oly) and (Ly? are known conbtinuous functions
ol the y wvariable, ¥ iz the thermal conductivity of the Lth
L
layer, and qux W ¥> is the x-direction heat flux in the ;Lh layer
LY

19
at. the interfacial plane x.
L

2.1 Soluation Procedure

On the light of an exact analytic methed previcusly developed
for sclving a certain type of steady 1nverse problems 1n a

single-layer. two-dimensional , plane wall (71, an analytic
procedure is developed for solving such a stated 1nverse problem
in a two—dimensional, composite wall C(ef. Fig. 1 3. Thrs

procedure is performed in the (ollowing steps

1= The Cx,y> field of temperature of the first layer (0O £ x £ x

and O£ y 2L2 1s calculated as in the case of single-wall (7] by
e <] = <] Zn
4T oy 4,00y
T Cx,yd = alxy —2 - = B — C4ad
[y I Zn k n zZn
dy 1 dy
=0 nEo
where
€15 "2 ¢-10" 27
DV ee— - —
anc}- c2nd | C4bo, anX) C2n+1 24 Cde

'Eco.y) and qKCO.y) are known boundary conditlions defined by
1§
Egs. (2ad and (E2bl, respectively.

2- Then, Lhe x-direction heat flux field of the lst laver is
calculated by applying Fourier’s law on Ey. C4ad. This gives
0 - 00 dzanCO.y)
d“"T €0, y> 5—;3:(:0 1

q L%y = <k a’Cx0 Zn CSad

s n dyzn E dy
n=o n=a

where a;ij and b:Cx) are the first-order, x-derivatives of the

aanD and anx) functions, respectively, which are defined by

2 = o2 ¢56d  and pew =" X CSed
n {2n~-12! n CZ2n3t
3- The temperature T1Cx1,y3 and heat flux q, Cx*,y) at the

1
interfaciral surface x, are calculated by Egs. C4) and (53; with

®x = x respectively.

4- According to the Iinterfacial boundary conditions <(3ad and

-
(3b" 2, one sets TQCxt.yD = T1Cx1.y) and qx2CxL.y) = quCxl.y)

S- Now. the temperature solution of the Znd layer cXis = x, and

O =% v £ L) is determined similar te Lhat of bLhe lst laver by
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w [ra] Zr
a* T ek oy d qxixi ¥
T Cx.yd= Y a Cux D ——m—* - = b Cxmw 3 —— 2 ¢Bad
z ™ 1, Zn k ~ 1 2n
/ dy z dy
n=0 =0
wherain
c-1>"¢ x—x‘)z“ ¢-1>"¢ x—xl)znﬂ
aan—xa)= =3 (B, anx~xt)=\—?i§;:TST-— (BeD

where qux‘,yD and T2Cx1.y3 are known from step 4.
2

- Then, the x-direction heat flux field of the 2nd layer is
determined by applying Fourier's law on Eq. (8). This yields

o [1a] 2Zn
) ¢ T Cx L yd d qxi"a' 2
q Cx.yd=-k 2 k=) 2 2 b - — 2% C7ad
" 2 ™ i 27T tad 1 2
z dy dy
Nn=G =0
where
/ C—l)an—xx)zn"‘ p ¢-1>"¢ x~x1)2“
anC x~x‘3= BRI C7b) and th x—x1)= BT~y a— 7D

7-In similar way, the procedure will be proceeded tLill the last
laver of No. m.

However , the present solution can be generalized for any »Lh

layer of Lthe m-layered composite media as follows

I- The temperature fisld is defined by

w @ Zn
a*M Tk vy SRR SIS £
TCx,y) =3 a Cx=x J>oe—m "' - = b Cx-x 3 : ¢8ad
v " -4 2n k. " L-t zn
dy i dy
) n=0
where
¢ -13"Cx—x 1)"“ €-12"Cx-x *32"“
- _ =
aan xhdb— TS {8bY and ng—xbi) — BT C8cd
II- The x-direction hsat flux sclution
@ @ Zn
_ dznTCx,_ Ly ) d qKCxl_‘.y)
g (x.yd=—k a’Coem 3 —— " T2 N BTCxex Y ——— 2 'q->
ER 1 Ll At | Z2n n =a Zn
s ay dy
n=G n=0
fer +=1.2,3,....m {in X . = x = Xov Xy = G and O 5 y = L.

Here. Lt 1z important to point out that the solution procedure
using the above expressions (8) and (9) have to be perfaormed In
subsequent steps starting with the first layver and ending up with
the last layer number m.
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2.2 Extending the Solution for Internal Heat Generation Case

If there 1s internal heal generation in  the composite media.
the heat conduction problem may be moedeled by

with the same boundary conditions defined by Egqs. (22-(3), where a
L
15 the volumetric heal generation rate in the LLh Layer.

On the light of the method of solving the corresponding inverse
problem for a single plane wall (8], seclution of problem (112 i=s
cbtained which can be expressed 1n the gsneral form

a Cx—x, _ »*
T Cx.y> =T Cx.y> {grven by Eg. (8ad} - —+ _—*7° <1ad
1 13 c_.)C"
for v =1,2.3.....min Xx 4 £ x = Kop Ry T O and O £ y £ L.
.-

The =clution procedure has to be performed in subseguent steps
sSimilar to that in section 2.1, as it will next be demonstrated by
some appllication examples.

2.3 Application Examples

Example 1 : Consider a two-layered composite wall consisting

of two different materiais having constant thermal conductivity
coefficients k1 and ka‘ Tne boundary surface O,y is thermally

tnzuiated and has temperature profile descriped by TiCO.y) = ya+1.

Figure 2 illustrates the problem. It is required to determine the
Cx,y2 selution of temperature and heat flux.

Fig. 2 Problem description of =awample 1
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The mathematical model for Lhe probiem is

o*T 3T
— . z‘=0 in % £ x £ x and 0O £ y = L. 13D
Fxe '3)! -4 i
i =1.2 and x = C
with
T €Oy = vyl L Cldad
q Co.v> = 0O C14bd
xi
Tszt.yJ = T1Cx1.y3 Cunknown Cldc
aTZ gTi
kz s ) =k‘ v or qkixi.y) = qxix*.yD Cunknown2 C1ldd
x
i 1

The =eolution in layer No.1

According te the boundary condition C1l4b), the general solution
of Lemperature in the 1st layer, given by Eq.C4ald, reduces to

w

a*"r o,y
T Cx.y> = a () — o C15ad
1 2] 2n
dy
n=0
Substituting aanJ and Tlco,y) from Egs. (4bd and

C14ald, respeclively, into Lthe above squation gives

® Zn
d
_ ¢-1o 2 3
T1Cx.y3 = TBA5 dy2“ y o+ 1 C1i5Sh

Equatiaon 15k in expanded form is
a 2
Tle.y) =y = 3y + 1 C18ad

Applying Fourier’s law on Lhe above equation gives the x-direction
meat flux distribution as

JT‘Cx,yJ

x1Cx.y) = 7k, R = Sktxy C16bd

oq

and Lhe y-direction heat flux field by

aTSCx.yD

R T 3k Cx -y C18ed

q
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The solution in layer No.2

The interfacial condition Cl4cd and Eq. €186ad give
Tix .y) = v° - 3xfy -1 17D

Similarity. from Egqs. (14d) and C(1&b) one obtairs

U Cx ,y) = Bk x v c1ed
2 A R

The general sclution of Lemperature in the 2nd layer is described

by Eqs. €(8a-¢). Hence, substituting Tz Cxt.yD, q, Cxl.y) from
z2

Egs. ¢172 and ¢18). respectively, into Egs. (Ba-cJ gives

S S S _ z . . o~
IéCx.yD =y Iy 3= xi) ¥ 6kixle xx)y/kz+ 1 Cl8al

Applying Fourier's law on Eg. (i5ad yields

q Cx,.yd = Bk (x—-x Dy + Bk x ¥ C1i9o>
xz 2 i 1 1

and

g (x,y) = =k {3y~ 3~ 3Cx-x 2>+ Bk x C(x-x ) 1Ge)
¥ 2 Y 1 1A 1

2

Since the principle of heat balance are frequently used to test
the validity as well estimate the accuracy of a numerical selution
(121, we will apply this principle on the above solution to test
the present method. This task is presented 1n Appendix (I3, The
rasult proves wvalidity and exactness of the proposed method.

Example 2 : Resolve example I} assuming volumetric anternal heat
-
generation rate al in the first layer and g, in second layer of
the considered composite wall
This problem can be modeled by equation €112, for + = 1,2,
under the boundary and interfacial conditians Cl4ad-C14d>.

Consequently, the general solution of femperature. girven by Eq.
C12), can be interpolated for each layer as follows

The 1st layer solution

From combining Eg. (122 and Eq. (8); for i=1, with the boundary
conditions (14b) one obtains

o
a*"T ¢o.y a x*
T Cx,y) = a € —2— - 2 ¢20ad
1 n 2n 2k
=% 1
= O
Insarting aanJ and T!CO.y) from Egs. CAbD and Cldad,

respectivel vy, inte Eg. (20a) vields
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2 dzn a X2
_ =177 3 1
TLCx,y) = TS et {? + 1 - =L C20b2
dy !
f=a3
The above equation in expanded form vields
- 2z
q x
T Cxvy2 = ya - 3x2y + 1 - 2 (21a>
1 2k

1

Consequently, the heat {lux components can be calculated from the
above equation as

p 6TiCx.y) .

x*Cx.y} = -kljaz———— = Ekixy + q,« C{21bd
and
g 3T1Cx.y) 2 2

y1Cx.y)=—k‘ & =3k1Cx -y 2 C2led

The 2nd layer solution

The interfacial condition Cl4c¢) with Eg. (21a) yields

a 2 axxj
T,Cx.y? =y = 3y +1 - = <2z2a)
Alse the interfacial condition C14d) with Eq. (2ib) gives
q, ¢ N K * casbd
= -+
112 Xl.y 1)(;)/ qlx1

Compining Egqs. €122 and (82; with i1=2. and substituting Eqs. (23al
and (22b) yields

T Cx,y) = y3 - 3y{xz + Cx=x% D% 4+ 2k x Cx-x dIok_2 +
2 L 1 177 1 F

- -] " - 2
[= q x (x—-x 2 q Cx~x 2
1 - LEL I - - 2 o C23ad
2k k ek
i 2 z
Applying Fourier’s law on the above equation gives
- -
= p— . C —_
quCx.y) B{kZCx x‘) + klxx}y + qa,.x, + q,Cx xl) {&3b5
and
g Cx.yd = 3k _{x"= y® + Cx-x D%>+ Bk ¥ Cx-x ) ¢e3ed
v 2 1 ES it 1

2

Exactness of the above sclutjion has also been examined by
caleculating Lhe heat balance of the system. The test result
indicates walldity and exactness of the proposed approach.
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3. MATHEMATICAL FORMULATION FOR A COMPOSITE CYLINDRICAL WALL

Figure 2 describes the studied problem ror a composite’
cylindrical wall consisting of m layers from different materirals
having constant thermal and electrical properties. This type of
Lthe inverse problems is characlterized by existing two known
boundary conditions at one boundary surface : t he axial
distribution of each the temperature and GtLhe exterior heat f[lux;
both are prescribed at the inner c¢ylinder surface by known
continuous and differentiable functions of Lhe axial cocordinate y.

¥

I (

1 g |

} T e .y T T . T

J 1 ) i i 2 p m

i B

i . - "

f qrfrl.yJ kl Lz : g Lm

1

| .
ol r r r r r

1 2 3 m ™+ L

Fig. 3 The stated inverse problem for
a ¢ylindrical composite wall

The mathematical formulation of this problem is described by

a9 T, 1 gr. g T
z‘+;-——‘+ z‘=o in r. £r £1¢ , 0%y <L C24ad
ar ar a_), L L+t
v = 1,2,3, m

with
TCr ,y2 = LCyD C24bD

1o Cknown)

4

q Cr .y> = 3y C24ed

l‘“ i
qrcri.+17y)=qr_ Cri*t'y}‘ C24d>

- v Cunk nownd ¢ = 1,2,3....,m1

T Cr ¥y = T Cr Ly2 {24ed

L L+l A3 Lo S §
where the notions : {{y) and { y> are known continuous functions

t
of the y variable, and k., 12 the thermal conductivity of the N
+
layer. TLCr 1,y) and qur i.y) are Lhe temperature and the
LI . L
[N

radial heat flux, respectively, 1n the \Lh Layer at the

interfacial surface T
Zimilar Lo the previously descaribed case of the composite plane
wall. the sclubicon of Lthe above problem can be found by extending
the known soluticn for a single cylindrical wall [9)]. Thus. tLhe
selution af this problem ¢an be obtained which is eaxpreossod by:
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= [a o] Zn
a®"t e Ly . d qrfra‘yb
— " L —
Tlr.y = Firl &— c 6 [r)], ——o <25ad
dy v d)’
n=0 =0

where the leading bterms of F [r] are
™ LY

2
r.
= = = - ¢f 52 r_.
Fc‘[r'],t = 1. Fl[r]k_ i [1 Cr > +alnCr .;]
19 L
-4
T [s r.2 1. r_ a r.z r
Flrl = - ra'[z TR TR G otne e ]
L
o L C2s5b)
i 10 L. r.o2_ L .r_ a l.r.s
Folrl o = & [3—5 S EE-E -
+ 1
1 r. 2 1.r.a r
L t *
and that of 6 {r] are
La] L
r
Go{r]_L = r_LlnCP—?.
L
3
i r.z r,2 r
Gl[r-]i_ = "4— [1"‘ CF-) + (1+CF‘) ).‘LnCFD ]
L 1 L
5
™ 3 3.r.a rLz.o.r.4 r
G lrl, = * &3 [ g T By e ”“CF?] : c25e>
T L3 T
-7
_ .+ i1 Lry2_1.r s 11 .ros
G,lrl, = ~i=5 [108 TR 4‘17?\ 108Cr)\ N
L8
1 L.r.z2 l.r.4 1 r .o r
Gg * 7 " 3% - R 3““—3]
19 L t 19
for L= 1,28,3, , m in r‘:ErSr v and O =y =L
L

3.1 Extending the Solution for Internal Heal Generation Case

If the corposite cylinder wall involves heat generation , the
above soluticon can be extended to treat the moedified preblem by
following analy=sis way Similar to that made in the case of a
compesite plane wall. Thus, the solution becomes

a'rz r z "
T Cr,y> =T Cr.y> [by Eg. ¢2Ba>) - ; ‘[1 - ="+ alncr—)] 28>
. v [ T 3
for i = 1,2.3, .. ..m in C. S;-*Sr*ll and © £ y = L.
1 *
It is moted that Eg. €268 with . = 1, vields the same known

solution found tnr a single cvlindrical wall involving internal
heat generation (11].
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Here. 1L i=2 important Lo remember that the szclution has to  be
performed in marching preocedure  starting with the rirst laver and
ending up with the last laver of Mo, m; similar to that followed

in the case of the composite-pliane=wall sclution.

Notice : if the two known boundary conditions (24bd and (24c),
required for ‘he methed application. are prescribed at the suitside
surface of the nolilow cylinder inste=ad al Lhe inner suriacs as  L1n
Fig. 3. Lhe solution wilii be different (11)]. However. the above
expressions (25)-(28) can also pe used as the solution of thi=z
new case provided reversing Gthe consequence of numbering the
lavers and radii in Fig. 3; iL.e.. Lhe layer of No. i i= the

cuter layer of radius v and the last laver of Mo, m is Lthe i1nner
layer of radius r .
m

3.2 Application Example

Consider & hellow cylinder with a compositie wall (rom two
different materials having constant thermal properties. Figure 4
z=tates the problem. The inner cylinder surface 13 thermally

insulated and has temberature varyving wiblh the axial location.

wihlich described by T Crl.yJ = ay3+b. where 2 and D  are Known
1
constants.
1
| 5 !
—_ - -
| 11C0.y) ay Dl T; Tz
| .
=0
, 4 (ri,y) « K "
} L 1 2
| L .
(o} r r r,
% 2 3

Firg. 4 The problem statement of the example

The mathematical formulation of this problem :1s described by

8T , 9T 8 T
+;—‘+ =0 in roE2p S 0= v =L C27ad
arz ar 0),2 18 [ §
v= l,a

wl th
T e oyd = ay’ + b 27>
aq cr ;Y) = 0 C27Tc)

1
TZCrz.y) = TlCrZ.yJ Ca7d>

} Junk nownl

g Kr vy = Qe Lvl CETed
o 2 r Z
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The solution in the 13t layver

Equation UZBal with ' =1 . g1 ves Lhe general solution orf
Lemperature n the lzst layer, wnich andesr the boundar» condrlions
=27

i
by and {27c¢c2 vields

o
K—-. dZn
T ey = 1> R R— [ay3 . b] c28>

Eyuation C28) in expanded form yields

- . . a_, — -
;.1ur‘,y3= Cav’ =+*bl i-“o(r]1 + Bavy r-‘h[r]l {2%as>
Fram Eg. (23bB) with + = 1, the Fir] function= in Egq. (29a) are
2
C. r z r
Folel =1, F lrl = ¢ [1 - =" a_anF-—)] C29bd
i i

Conseguentl v, the radiral heat flux is caleulaved from BEg. (2922 as

aT
q' . 5 - _ _‘_H.L = - & -~ I
‘lf.r.y. ki 57 c‘.);a.k]Ly{—'n[r*]t 2%9cD
whearein F':[ r] . i= Lhe lst-order. radial derivative of Fl[ r] .

which iz calculated from Egq. €29b3, by

. I“ l"'J. ™
I'x{r‘]‘ = 5 [_r‘_ - Fi] i

By samilarrty. the y-direction heat flux calculated trom Eg. (2%a)

i3

(]

=d

q z

yLCr,y)= - .:;akl (y + aFi[rji) (2Qel

The solution 1n the 2nd layer

According Lo Eqs. (27ds and Eq. (Z22ad one obtains

a N .
Tz'frz,y) = Cay +bd) = Ic':-..zu}/F'i{rZ]x C30%

Bv samilarity, Egs. {(27ed and (29¢) glrves

4 [y . = - -
B Y Gakiy 13'1_[r=2],L

k4 2

T30
whera thrz} . and F:[rzj . are calculated froam Egs. c28hl and

T29d) . respectively; with setting r = r

Mow. by zsettaing « = 2 in Eq. CZ2%a2. the general =zolution or

remparatarg r eads
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a0 R u jan r o
——— [ - < hd - - -
i i - ; £ -
. ‘ - iz 2 i 1 . "2 ey -
Tar.v> = % F (1] — - - = s [(r) @ —— = CE2a0
2 m 2 2 K n 2 zn
v Fs B z dy
n =0 mn=0
By substituting Tz{rz.yj and qrz-hrz.y) from Zgs. <3065 and <315,

respectivel v, into Lthe apove equalion., one geLz

- - 3 - -7 o g
= LS - LS [ = - ~ e ™
T Cr.oyd= Cay +b) 5-3,:44;{‘1“2}1L Foled,+ 5 7k 6. [r], F I 2]1} <32bd

Wi e F’[r]2 reads from £g. 22%p2; with . = 2. asz
rz - 2 r
:"L[I“]2= ry [l. - Cr——) - ELFIC}-_—)] C3222d
z z

and C-‘;‘c.[r']2 from . L2%cl: with « = 2. by

S (r] = T in Cr A 324>
< 2 2 2

applving Fourier ' s ifaw on Eg. <32b) girves the radial heat flux as
¢ o= -5 =f -~ - ¥ G7 o S 3Ta

qr;r,y; Bay {kz ,‘[,}z k’_Go[r']z Ft[rz]x} {33al

where 1="l-[r-]2 12 calaulated from Eq. C38c¢l) as

. !"2 l"z r

Filrl, = 5 [?-.—;] <33

Zz

and G;[rj , Trom Eg. <32d> by

S 3

S {r] = Oy g o (33c¢2
o 2 2z

By similarlyv. one geks the y-directien neat flux rrom Eg. <(32b) by
q P 2 - - - Falr-T N
yzCr‘y) Bakzy aa{kz rl[rz] 1+k2 Fl[r] 2-1~kl Gm[r‘]z F*{rz] ‘} 345
Check on the above solution 13 presentaed in Appendix CIID.

4 CONCLUSIONS

The present study braovides AN exact and direct mecthaod for
solving LiLnverse probiems of steady. two-dimensional. heat
conduction 1in  a composh Le media from the knowiedge of the

temperature., and exterior heat flux distribution.provided GLhat
both are prescribed at the sSame boundary surface B Knaown

continuous and differentiable functions of the =patyal varirable
with Lhe surrface Lengith., The =ffect of heat generation in the wali
13 exactliy considered 1n the solution. Explicit expressions for

temperature. and hesal flux calculation are obtained tor a3 plane
compasite wall as well for a ceviindrical composibe wall,
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APPENDIX (L[>

s el
Here solution of L T a T =
example No. 1 which 1z |
obtained by the present !
method, will be checked a CO.y)_b [ 1 { 2 a Cx_.yd
up by  applying  the heat "y i | 2 ?
balance on the wall. '
The surface neat  flux 0 2 x
- L ~ 2
components, shown 1n Flig. S g i
5, can be detzrmned as v Lieed v & 02
follows : Fig. 9 Heat balance oI app. I
q {0.y2> = O, O = y =L Eisk
x.\
qleX.OD = Sklxz; O S % % <36
g (=00 = 3k P HCxmx DI HBK % Cx-x 2 M2 o E o C37)
yz 2 1 1 11 1 1 2z
OneL = & - . < < -
qx;xz yo ckZsz X‘Dy + akixty, O =y = L 380
qych,L) = 3k1Cx2-Lz); 0 S xS x €395
q Cx L) =k <~-3L7+3%430x~x D348k w Cx-x I, xS x £ x To)
v z 1 1 11 i L 2

2

by wusing £gs. (18682 to (19c). respecrively.

The heat flow into the system of Fig.S is calculated by

x >
L 1 2
HealL inflow = 7 q CO,y) dy + J g (x.0) dx + F g {(x,0> dx <412
o Y o Y. x Tz

a

By substrtuting Egs. (350 to (37D into Eq. (413 with calculating
the wrniegrals. one gets

Heat inflow = & (x°+ 3Bx Cx -x 27r+k {C3x°x - 3"+ Cx -x 37> (42
1 1 a Z 1 2 i 2 1 = 1

The heat rflow out (rom the wall 13 calculated by

w =
L 1 z
Heat outflow = JF g (x_,y2 dy + 5 g (x. LD dx + JF q (x,L> dx CA3D
o a2 2 o Yy x, Y2
Substituting Egs. {382 LaCi0) into Eq.C433,with calculating the

involved Lntegrals.one oblains the Tame result  azs  that of Eg.
42>, This means that i1nflow 1= equal Lo heat  outflow. This
proves exactness and validifty o1 the proposed method.



1
~1

Mansoura Engineering Journal. Vol. 1&., No. 4. Dec. L3I0Z M.

APPENDLLX CIID

In thiz context. L
the solution of the
applircation example, !
derived 1n section t
3.2, will be checkad !
by «calculating Gthe Ol
heat balance of the
SYSLem illustrated
in Fig. B

i
L
3

w

y Cr.03 Y crlod
1 2

Fig. & Heat balance of app. II

Thne net neat flow in Lhe x-direction 15 calcul ated by

L
2 Q, - 2 Q =an s {rg qir oy -, qurt,yD} dy <443
St e 8] 2 1

Substitutlng qTCrx.y) and g Cra,y)from Eq. €28cl; with r=r . and
r L

1 2
Eq. ©332>;, with r = e respectrvely, 1nto Eg. 44> yvi=slds
z o - E Q = Banr Lz[k Ftr 1 +k & tr 1 Fir_} ] CaA%>
By ® a 2 1+ a3 =z i O 3 2 L 2 4
ou L 1r
Substituting FOr 1 . & (r ] and F'l{r_ 1 from Egs. C33b3. ¢33c)
a3 =z & 3 2 i 2 1

and C(2949) respectively, into Eq. (450 gives
z Qe - 2 Q = 3anl’ [& eFor®y o+ ok Crz—rz)] 48D
T L . L ® 2 3 2 1 2 1

In simlar way. the net heat flow 1n y-direction is
r r

z 3
E o —z Q =an s {q Cr .L)~q Cr,O)}rdr + 2 F {q Cr,LD—q\Zr.O)}rdr
LT & ¥ T Y r yi. Y: l"2 YZ "2
C47>

Bubstituting from Egs. (22e) and (342 into Eq. C4A7d grves

o z 2 _ Ry 2__ 2 .
2 Q E Q = -Zanl® [ k Cro-e®> vk <rier?> ) C 48D
LT

S b

Equations (482 and <483 indicate Lhat heat 1nflow is equal to
neat oulllow., This proves validity of the proposed method.

NOMENCLATURES

aanD w-dependent coefficrent, m?"
bn(xJ w—dependent coel ficlent, minTd
Fn[r] r-dependent coerficient, m> "

— = . P
un[r] r-dependent coefficient, m
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- - . - o
nhermal conductivity of Lhe Layer Ne.o .o W¥WoOm 05

wail npeirght. m

m Mo, o iavers 1n the composile medira. dimens:onlass
3, radial neat flux in the laver No. .. KW, m?

.
= “~diraction neal (lux 1n btne faver Moo o, k¥om

L

a, v-~diraection heat {iux 1n Lhe laver No. ., xwom?

a voiwnetric heat generation rate. KW omt

~ radial coordinavs. m

T\ vemperature 1n Lhe layver No. . °c

MW cartesian coordinates. m

oyl (w3 y—depandent functions. °c

Sy y-depaendent function, CCom
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